
 Non-Abelian vortices in SO(N) and USp(N) gauge theories

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP06(2009)004

(http://iopscience.iop.org/1126-6708/2009/06/004)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:16

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/06
http://iopscience.iop.org/1126-6708/2009/06/004/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

Published by IOP Publishing for SISSA

Received: April 3, 2009

Accepted: May 16, 2009

Published: June 1, 2009

Non-Abelian vortices in SO(N) and USp(N) gauge

theories

Minoru Eto,a,b Toshiaki Fujimori,c Sven Bjarke Gudnason,a,b Kenichi Konishi,a,b

Takayuki Nagashima,c Muneto Nitta,d Keisuke Ohashie and Walter Vincia,b,e

aDepartment of Physics, University of Pisa,

Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy
bINFN, Sezione di Pisa,

Largo Pontecorvo, 3, Ed. C, 56127 Pisa, Italy
cDepartment of Physics, Tokyo Institute of Technology,

2-12-1 Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan
dDepartment of Physics, Keio University,

Hiyoshi, Yokohama, Kanagawa 223-8521, Japan
eDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, U.K.

E-mail: minoru@df.unipi.it, fujimori@th.phys.titech.ac.jp,

gudnason@df.unipi.it, konishi@df.unipi.it,

nagashima.t.aa@m.titech.ac.jp, nitta@phys-h.keio.ac.jp,

K.Ohashi@damtp.cam.ac.uk, walter.vinci@pi.infn.it

Abstract: Non-Abelian BPS vortices in SO(N)×U(1) and USp(2N)×U(1) gauge theories

are constructed in maximally color-flavor locked vacua. We study in detail their moduli and

transformation properties under the exact symmetry of the system. Our results generalize

non-trivially those found earlier in supersymmetric U(N) gauge theories. The structure of

the moduli spaces turns out in fact to be considerably richer here than what was found

in the U(N) theories. We find that vortices are generally of the semi-local type, with

power-like tails of profile functions.

Keywords: Supersymmetric gauge theory, Spontaneous Symmetry Breaking, Duality in

Gauge Field Theories, Solitons Monopoles and Instantons

ArXiv ePrint: 0903.4471

c© SISSA 2009 doi:10.1088/1126-6708/2009/06/004

mailto:minoru@df.unipi.it
mailto:fujimori@th.phys.titech.ac.jp
mailto:gudnason@df.unipi.it
mailto:konishi@df.unipi.it
mailto:nagashima.t.aa@m.titech.ac.jp
mailto:nitta@phys-h.keio.ac.jp
mailto:K.Ohashi@damtp.cam.ac.uk
mailto:walter.vinci@pi.infn.it
http://arxiv.org/abs/0903.4471
http://dx.doi.org/10.1088/1126-6708/2009/06/004


J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

Contents

1 Introduction 1

2 Vortex equations and basics 2

2.1 The moduli matrix and BPS equations 2

2.2 GNOW quantization for non-Abelian vortices 6

2.3 Z2 parity 9

2.4 Local versus semi-local vortices 10

3 Local vortices and their orientational moduli 13

3.1 The single (k = 1) local vortex for G′ = SO(2M),USp(2M) 14

3.1.1 Examples: G′ = SO(2),SO(4),SO(6) and G′ = USp(2),USp(4) 17

3.2 The doubly-wound (k = 2) local vortex in G′ = SO(2M) and G′ = USp(2M)

theories 19

3.2.1 G′
C+F-orbits for coincident vortices 22

3.2.2 Examples: G′ = SO(2),SO(4) and G′ = USp(2),USp(4) 27

3.3 The k = 1 local vortex for G′ = SO(2M + 1) 33

3.3.1 Examples: G′ = SO(3),SO(5) 37

4 Semi-local vortices 39

4.1 Dimension of the moduli space 40

4.2 The k = 1 semi-local vortex in G′ = SO(2M),USp(2M) theories 42

4.2.1 Example: G′ = SO(4) 44

4.3 The k = 2 semi-local vortices 45

4.3.1 G′ = SO(4) 47

4.4 The k = 1 semi-local vortex for G′ = SO(2M + 1) 50

4.4.1 G′ = SO(3) 50

4.4.2 G′ = SO(5) 51

5 Conclusion and discussion 52

A The index theorem 54

B The orientation vectors 57

C Some details 59

C.1 Spatially-separated vortices 59

C.2 Fixing NG modes for section 3.2.1 60



J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

D Some transition functions 62

D.1 Example 1 62

D.2 Example 2 63

D.3 Example 3 63

D.4 Example 4 64

D.5 Example 5 64

D.6 Example 6 65

1 Introduction

Solitons play an important role in a wide range of physics, from condensed-matter and

fluid dynamics to cosmology and particle physics [1]–[6]. A quiet revolution in our un-

derstanding of soliton vortices has been taking place in the last few years, in the context

of supersymmetric gauge theories, triggered by the discovery of vortices of non-Abelian

type [7, 8]. The latter represent continuous families of vortex solutions carrying various

moduli corresponding to the internal orientations (related to the exact flavor symmetry of

the system) as well as other zero-modes. It is possible that such non-Abelian vortices are

a key to unravel the mystery of confinement in Quantum Chromodynamics (QCD).

Motivated by this, together with other physics interests, many related questions have

been investigated systematically by several groups [9]–[41]. The moduli-matrix formal-

ism was introduced in refs. [9]–[12] in order to exhaust all possible moduli. The moduli

and transformation properties of the moduli in the cases of composite vortices (higher-

winding vortices) [13–16] and semi-local vortices [17, 18], have been studied. A new type

of (Seiberg-like) duality was found among pairs of models having related vortex moduli,

sharing a common sigma-model-lump limit [18]. Systems having vortex solutions carrying

more than one non-Abelian modulus factor have been studied recently [19]. Furthermore,

vortices were found to provide us with a deep physical intuition about some well-known

correspondence between theories in the four and two dimensions [32, 33, 42]. So far, how-

ever, most studies have been limited to the case of U(N) gauge theories, with a few but

notable exceptions [20–22].

In a brief note, some of the present authors have presented a general prescription

for constructing the Bogomol’nyi-Prasad-Sommerfield (BPS) vortices in color-flavor locked

vacua of a more general class of theories, with a gauge group of the form, G = G′ × U(1),

where G′ is any semi-simple group [23]. Some explicit expressions for the moduli matrix

construction of the minimum-winding vortex in SO(N), USp(2N) models were given there.

It is the purpose of this paper to discuss the properties of the non-Abelian BPS vortices

in SO(N) and USp(2N) gauge theories in more detail. The moduli space in each case is

carefully analyzed, both for the fundamental (or minimal) vortices and for the winding-

number two vortices. The study of the non-minimal vortices and their transformation

properties is particularly important from the point of view that the latter has a simple

group-theoretic nature, in terms of a dual group.

– 1 –
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When the model is embedded in a larger, underlying gauge group, spontaneously bro-

ken to the model under study, the vortex transformation properties endow the monopoles

appearing at the extremes of the vortices with non-Abelian moduli.1

The paper is organized as follows. In section 2 the model is presented and the vortex

Bogomol’nyi equations are put in a simple form by the introduction of the moduli matrix.

The basic characterization of vortices in SO(N) and USp(2N) theories which follows from

this general construction is discussed. Section 3 is dedicated to the study of vortex solutions

of the Abrikosov-Nielsen-Olesen (ANO) [1, 2] type (sometimes called local vortices), their

moduli space and its structure. We make use of concrete examples (the lowest-rank gauge

groups) for the sake of clarity. The analysis is then extended in section 4 to a larger

set of BPS-saturated vortex solutions which includes the so-called semi-local vortices [3].

The structure of the moduli space including these points becomes much richer. Again, we

discuss in some detail a few concrete cases with the lowest-rank gauge groups. An index

theorem for the dimension of the moduli space for vortices with a general gauge group

U(1) ×G′ is discussed in appendix A.

Two issues of considerable interest seem to emerge from our study, which are only

briefly discussed here. One is the question of the Goddard-Nuyts-Olive-Weinberg(GNOW)

quantization/duality of the non-Abelian vortices, which is deeply related to the original

problem of understanding non-Abelian monopoles [43]. Another is the appearance of “frac-

tional vortices”, which seems to be very common when one studies vortices in models other

than the U(N) gauge theories. Although the results of the present paper provide us with

a concrete starting point and important ingredients for the analysis of these questions, in

order to keep the length of the paper to a reasonable size and for the ease of reading, we

reserve a more thorough discussion of these two issues for separate, forthcoming papers.

2 Vortex equations and basics

2.1 The moduli matrix and BPS equations

In this section we study vortex solutions in four-dimensional gauge theories with an

SO(N) × U(1) or USp(N) × U(1) gauge group,2 and with NF scalars in the fundamen-

tal representation. Sometimes the gauge group will be indicated in a more general way,

as G = G′ × U(1) with G′ being any simple group; the prescription for writing down the

BPS vortex solutions in all these cases has in fact been given in ref. [23]. However, below

we shall concentrate on the gauge groups SO(N) × U(1) and USp(N) × U(1). An integer

M will be used to indicate the gauge group, such that N = 2M or N = 2M + 1, for even

SO(N) and USp(N) or odd SO(N), respectively.

The Lagrangian density reads

L=Trc

[

− 1

2e2
FµνFµν− 1

2g2
F̂µν F̂µν +DµH (DµH)†− e2

4

∣
∣X0t0−2ξt0

∣
∣
2− g2

4
|Xata|2

]

, (2.1)

1The latter has been interpreted as gauge modulations in the dual, confinement phase [16].
2 The case of local vortices with the gauge groups SO(N) × U(1) has first been considered in ref. [21].

– 2 –
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with the field strength, gauge fields and covariant derivative denoted as

Fµν = F 0
µνt0 , F 0

µν = ∂µA0
ν − ∂νA

0
µ , F̂µν = ∂µAν − ∂νAµ + i [Aµ, Aν ] ,

Aµ = Aa
µta , Dµ = ∂µ + iA0

µt0 + iAa
µta . (2.2)

A0
µ is the gauge field associated with U(1) and Aa

µ are the gauge fields of G′. The matter

scalar fields are written as an N × NF complex color (vertical)-flavor (horizontal) mixed

matrix H. It can be expanded as

X =HH†=X0t0+Xata+Xαtα , X0 =2Trc

(

HH†t0
)

, Xa =2Trc

(

HH†ta
)

, (2.3)

where the traces with subscript c are over the color indices. e and g are the U(1) and G′

coupling constants, respectively, while ξ is a real constant. t0 and ta stand for the U(1) and

G′ generators, respectively, and finally, tα ∈ g′⊥, where g′⊥ is the orthogonal complement

of the Lie algebra g′ in su(N). We normalize the generators according to

t0 =
1N√
2N

, Tr(tatb) =
1

2
δab . (2.4)

We have chosen in eq. (2.1) a particular, critical quartic scalar coupling equal to the

(square of the) gauge coupling constants, i.e. the BPS limit. Indeed such a Lagrangian can

be regarded as the truncated bosonic sector of an N = 2 supersymmetric gauge theory.3

The constant ξ would in this case be the Fayet-Iliopoulos parameter. In order to keep the

system in the Higgs phase, we take ξ > 0. The model has a gauge symmetry acting from

the left on H and a flavor symmetry acting from the right. First we note that this theory

has a continuous Higgs vacuum which was discussed in detail in ref. [22]. In this paper, we

choose to work in a particular point of the vacuum manifold:

〈H〉 =
v√
N

1N , ξ =
v2

√
2N

, (2.5)

namely, in the maximally “color-flavor-locked” Higgs phase of the theory. We have set

NF = N which is the minimal number of flavors allowing such a vacuum.4 The existence

of a continuous vacuum degeneracy implies the emergence of vortices of semi-local type as

we shall see shortly.

Performing the Bogomol’nyi completion, the energy (tension) reads

T =

∫

d2xTrc

[

1

e2

∣
∣
∣
∣
F12 −

e2

2

(
X0t0 − 2ξt0

)
∣
∣
∣
∣

2

+
1

g2

∣
∣
∣
∣
F̂12 −

g2

2
Xata

∣
∣
∣
∣

2

+ 4
∣
∣D̄H

∣
∣2 − 2ξF12t

0

]

≥ −ξ

∫

d2xF 0
12 , (2.6)

3The full supersymmetric bosonic sector contains an additional set of squarks in the anti-fundamental

representation of the gauge group, and an adjoint scalar field. We can consistently forget about them, as they

are trivial on the BPS vortices. Although we shall not make explicit use of any of the consequences of N = 2

supersymmetry (the missing sector is truly relevant at the quantum level), this way of regarding our system

is useful for providing a convenient choice of the potential and its stability against radiative corrections.
4Notice that this not the minimal choice for the existence of a vacuum which supports BPS vortices.

In fact, such a minimal number is NF = 1 in the SO case and NF = 2 in the USp case. However, in this

case there is a residual Coulomb phase. The vortices actually reduce to those appearing in theories with a

lower-rank gauge group.

– 3 –
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where D̄ ≡ D1+iD2
2 is used along with the standard complex coordinates z = x1 + ix2

and all fields are taken to be independent of x3. When the inequality is saturated (BPS

condition), the tension is simply

T = 2
√

2Nπξν = 2πv2ν , ν = − 1

2π
√

2N

∫

d2xF 0
12 , (2.7)

where ν is the U(1) winding number of the vortex. This leads immediately to the BPS

equations for the vortex

D̄H = ∂̄H + iĀH = 0 , (2.8)

F 0
12 = e2

[

Trc

(

HH†t0
)

− ξ
]

, (2.9)

F a
12 = g2 Trc

(

HH†ta
)

. (2.10)

The matter BPS equation (2.8) can be solved [9–11] by the Ansatz

H = S−1(z, z̄)H0(z) , Ā = −iS−1(z, z̄)∂̄S(z, z̄) , (2.11)

where S belongs to the complexification of the gauge group, S ∈ C
∗ × G′C. H0(z), holo-

morphic in z, is called the moduli matrix [12], which contains all moduli parameters of the

vortices as will be seen below.

A gauge invariant object can be constructed as Ω = SS†. It will, however, prove con-

venient to split this into the U(1) part and the G′ part, such that S = s S′ and analogously

Ω = ω Ω′, ω = |s|2, Ω′ = S′S′†. In terms of ω the tension (2.7) can be rewritten as

T = 2πv2ν = 2v2

∫

d2x ∂∂̄ log ω , ν =
1

π

∫

d2x ∂∂̄ log ω , (2.12)

and ν determines the asymptotic behavior of the Abelian field as

ω = ss† ∼ |z|2ν , for |z| → ∞ . (2.13)

The minimal vortex solutions can be written down [23] by making use of the holomor-

phic invariants for the gauge group G′ made of H, which we denote Ii
G′(H). If the U(1)

charge of the i-th invariant is denoted by ni, Ii
G′(H) satisfies

Ii
G′(H) = Ii

G′

(

s−1S′−1
H0

)

= s−niIi
G′(H0(z)) , (2.14)

while the boundary condition is

Ii
G′(H)

∣
∣
∣
∣
|z|→∞

= Ii
vev eiνniθ , (2.15)

where ν ni is the number of zeros of Ii
G′ . This leads then to the following asymptotic

behavior

Ii
G′(H0) = sniIi

G′(H)
|z|→∞−→ Ii

vevz
νni . (2.16)

– 4 –
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It implies that Ii
G′(H0(z)), being holomorphic in z, are actually polynomials. Therefore

ν ni must be positive integers for all i:

ν ni ∈ Z+ → ν =
k

n0
, k ∈ Z+ , (2.17)

with

n0 ≡ gcd
{
ni |Ii

vev 6= 0
}

, (2.18)

where “gcd” stands for the greatest common divisor. The U(1) gauge transformation

e2πi/n0 leaves Ii
G′(H) invariant and thus the true gauge group is

G =
[
U(1)×G′] /Zn0 , (2.19)

where Zn0 is the center of the group G′. The minimal winding in U(1) found here, 1
n0

,

corresponds to the minimal element of π1(G) = Z, as it represents a minimal loop in the

group manifold G. As a result we find the following non-trivial constraints for H0

Ii
G′(H0) = Ii

vev z
kni
n0 +O

(

z
kni
n0

−1
)

. (2.20)

Let us now obtain the explicit constraints for the gauge groups SO and USp. The

invariants are

(ISO,USp)
r
s = (HTJH)rs , 1 ≤ r ≤ s ≤ N , (2.21)

which finally yields what we call the weak constraint for the moduli matrix,

HT
0 (z)JH0(z) = z

2k
n0 J +O

(

z
2k
n0

−1
)

. (2.22)

Here J is the invariant tensor of G′:

Jeven =

(

0 1M

ǫ1M 0

)

, Jodd =






0 1M 0

1M 0 0

0 0 1




 , (2.23)

where in the first matrix ǫ = +1 for SO(2M) and ǫ = −1 for USp(2M),5 while the second

matrix is for the SO(2M + 1) theory. The integer n0 for each group is listed in table 1.

Vortices represented by eq. (2.22) include also semi-local vortices.

In terms of Ω the BPS-equations (for the gauge-fields) (2.9) and (2.10) can be ex-

pressed as

∂∂̄ log ω =
m2

e

4

(

1− 1

Nω
Trc

(

Ω0Ω
′−1
))

, (2.24)

∂̄
(

Ω′∂Ω′−1
)

=
m2

g

8ω

(

Ω0Ω
′−1 − J†(Ω0Ω

′−1
)TJ

)

, (2.25)

5The symbol ǫ will appear many times below. It will always take one of the two values, depending on

the choice of the gauge group

– 5 –
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SO(2M) USp(2M) SO(2M + 1)

n0 2 2 1

Table 1. n0 for SO(N) and USp(2M)

where Ω0 ≡ N
v2 H0H

†
0 and me = ev√

N
, mg = gv√

N
are masses around the vacuum (2.5).

The equations (2.24) and (2.25) are called master equations for the gauge group G′ =

SO(N) and USp(2M) with the respective invariant tensor J . Both sides of these equations

transform covariantly under the following transformation:

S(z, z̄)→Ve(z)V ′(z)S(z, z̄) , H0(z)→Ve(z)V ′(z)H0(z) , Ve(z)∈C
∗ , V ′(z)∈G′C.

(2.26)

This transformation does not change the original fields H and A (see equation (2.11)).

Therefore, the solutions to the equations (2.24) and (2.25) are equivalent if they are re-

lated by the transformation (2.26). We denote this the V-equivalence relation. The master

equations (2.24) and (2.25) should be solved such that the solution approaches the vac-

uum configuration at the boundary |z| → ∞. Therefore, one must enforce the following

asymptotic behavior on6 Ω = ωΩ′,

log Ω = log Ω∞ +O
(

1

me,gz
,

1

me,gz̄

)

. (2.27)

Here the leading contribution Ω∞ = ω∞Ω′
∞ is given as the unique solution to the D-term

conditions X0 = Xa = 0 with a given H0(z). They are obtained by the Kähler quotient

method and are found for the gauge groups G′ = SO(N),USp(N) in ref. [22] to be:

Ω′
∞ = H0(z)

1N
√

I†G′IG′

H0(z)†, ω∞ =
1

v2
Tr

[√

I†G′IG′

]

, (2.28)

where the G′-invariant IG′ = IG′(H0) = HT
0 (z)JH0(z). With this boundary condition, the

master equations are expected to have a unique (and smooth) solution with a given H0(z).

Namely, we expect that vortex configurations are completely characterized by H0(z). The

validity of this expectation will be discussed in section 4.1.

2.2 GNOW quantization for non-Abelian vortices

Our task is to find all possible moduli matrices which satisfy the weak condition (2.22). In

general this is not easy. But certain special solutions can be found readily, and each such

solution is characterized by a weight vector of the dual group, and are labelled by a set of

integers νa (a = 1, . . . , rank(G′))

H0(z) = zν1N+νaHa ∈ U(1)C ×G′C , (2.29)

6For vortices satisfying the strong condition (2.64), Ω∞ reduces to Ω0 and the next to leading terms of

log Ω are O

“

e−me,g |z|
”

as will be explained later.

– 6 –
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where ν = k/n0 is the U(1) winding number and Ha are the generators of the Cartan

subalgebra of g′. These special solutions satisfy the strong condition (2.64), given below,

with zi = 0. H0 must be holomorphic in z and single-valued, which gives the constraints

for a set of integers νa

(ν1N + νaHa)ll ∈ Z≥0 ∀ l . (2.30)

Suppose that we now consider scalar fields in an r-representation of G′. The constraint is

equivalent to

ν + νaµ
(i)
a ∈ Z≥0 ∀ i , (2.31)

where ~µ(i) = µ
(i)
a (i = 1, 2, . . . ,dim(r)) are the weight vectors for the r-representation of

G′. Subtracting pairs of adjacent weight vectors, one arrives at the quantization condition

~ν · ~α ∈ Z , (2.32)

for every root vector α of G′.
Eq. (2.32) is formally identical to the well-known Goddard-Nuyts-Olive-Weinberg

(GNOW) quantization condition [43] for the monopoles, and to the vortex flux quanti-

zation rule found in ref. [44]. There is however a crucial difference here, as compared to

the case of [43] or [44]. Because of an exact flavor (color-flavor diagonal GC+F) symmetry

present here, which is broken by individual vortex solutions, our vortices possess continuous

moduli. As will be seen later, at least in the local case these moduli are normalizable, and

there are no conceptual problems in their quantization. On the contrary, vortices in ref. [44]

do not have any continuous modulus, while in the case of “non-Abelian monopoles” [43]

these interpolating modes suffer from the well-known problems of non-normalizability. An-

other way the latter difficulty manifests itself is that the näıve “unbroken” group cannot

be defined globally due to a topological obstruction [45] in the monopole backgrounds.

The solution of the quantization condition (2.32) is that

~̃µ ≡ ~ν/2 , (2.33)

is any of the weight vectors of the dual group of G′. The dual group, denoted as G̃′, is

defined by the dual root vectors [43]

~α∗ =
~α

~α · ~α . (2.34)

We show examples of dual pairs of groups G′, G̃′ in table 2. Note that (2.31) is stronger

than (2.32), it has to be zero or a positive integer. This positive quantization condition

allows for only a few weight vectors. For concreteness, let us consider scalar fields in

the fundamental representation, and choose a basis where the Cartan generators of G′ =

SO(2M),SO(2M + 1),USp(2M) are given by

Ha = diag

(

0, . . . , 0
︸ ︷︷ ︸

a−1

,
1

2
, 0, . . . , 0
︸ ︷︷ ︸

M−1

,−1

2
, 0, . . . , 0

)

, (2.35)

– 7 –
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G′ G̃′

SU(N) SU(N)/ZN

U(N) U(N)

SO(2M) SO(2M)

USp(2M) SO(2M + 1)

SO(2M + 1) USp(2M)

Table 2. Some pairs of dual groups

with a = 1, . . . ,M . In this basis, special solutions H0 have the form7 for G′ = SO(2M)

and USp(2M)

H
(µ̃1,...,µ̃M )
0 = diag

(

zk+
1 , . . . , zk+

M , zk−
1 , . . . , zk−

M

)

, (2.36)

while for SO(2M + 1)

H
(µ̃1,...,µ̃M )
0 = diag

(

zk+
1 , . . . , zk+

M , zk−
1 , . . . , zk−

M , zk
)

, (2.37)

where k±
a = ν ± µ̃a.

For example, in the cases of G′ = SO(4),USp(4) with a ν = 1/2 vortex, there are four

special solutions with ~̃µ = (1
2 , 1

2), (1
2 ,−1

2), (−1
2 , 1

2), (−1
2 ,−1

2)

H
( 1
2
, 1
2
)

0 = diag(z, z, 1, 1) = z
1
2
14+1·H1+1·H2, (2.38)

H
( 1
2
,− 1

2
)

0 = diag(z, 1, 1, z) = z
1
2
14+1·H1−1·H2, (2.39)

H
(− 1

2
, 1
2
)

0 = diag(1, z, z, 1) = z
1
2
14−1·H1+1·H2, (2.40)

H
(− 1

2
,− 1

2
)

0 = diag(1, 1, z, z) = z
1
2
14−1·H1−1·H2. (2.41)

These four vectors are the same as the weight vectors of two Weyl spinor representations 2⊕
2′ of G̃′ = SO(4) for G′ = SO(4), and the same as those of the Dirac spinor representation

4 of G̃′ = Spin(5) for G′ = USp(4).

The second example is G′ = SO(5) with ν = 1. We have nine special points which are

described by ~̃µ = (0, 0) and (1, 0), (0, 1), (−1, 0), (0,−1) and (1, 1), (1,−1), (−1, 1), (−1,−1)

and thus correspond to

H
(0,0)
0 = diag(z, z, z, z, z) = z1·15+0·H1+0·H2, (2.42)

H
(1,0)
0 = diag(z2, z, 1, z, z) = z1·15+2·H1+0·H2 , (2.43)

H
(0,1)
0 = diag(z, z2, z, 1, z) = z1·15+0·H1+2·H2 , (2.44)

H
(−1,0)
0 = diag(1, z, z2, z, z) = z1·15−2·H1+0·H2 , (2.45)

H
(0,−1)
0 = diag(z, 1, z, z2, z) = z1·15+0·H1−2·H2 , (2.46)

H
(1,1)
0 = diag(z2, z2, 1, 1, z) = z1·15+2·H1+2·H2, (2.47)

7The integers k±
a and k here coincide with n±

a and n(0), respectively, of ref. [21].
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SO(2)

1
2

−1
2 1−1

SO(3)

0

USp(2)

1
2

−1
2

SO(4)

(1
2
, 1

2
)

SO(5)

(1, 1)

USp(4)

(1
2
, 1

2
)

(1, 0)

(0, 0)

SO(6)

(1
2
, 1

2
, 1

2
)

USp(6)

(1
2
, 1

2
, 1

2
)

Figure 1. The special points for the k = 1 vortex.

H
(1,−1)
0 = diag(z2, 1, 1, z2, z) = z1·15+2·H1−2·H2, (2.48)

H
(−1,1)
0 = diag(1, z2, z2, 1, z) = z1·15−2·H1+2·H2, (2.49)

H
(−1,−1)
0 = diag(1, 1, z2, z2, z) = z1·15−2·H1−2·H2. (2.50)

These nine vectors are the same as the weight vectors of the vector representation 4 and

the antisymmetric representation 5 of the dual group G̃′ = USp(4). The weight vectors

corresponding to the k = 1 vortex in various gauge groups are given in figure 1.

2.3 Z2 parity

As discussed in ref. [21], the vortices in G′ = SO(N) theory are characterized by the first

homotopy group

π1

(
SO(N)×U(1)

Zn0

)

= Z× Z2 , n0 = 1 (N odd) , n0 = 2 (N even) , (2.51)
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µ̃1 µ̃2 QZ2

1
2

1
2 +1

1
2 −1

2 −1

−1
2

1
2 −1

−1
2 −1

2 +1

µ̃1 µ̃2 QZ2

0 0 +1

±{1 0} −1

±{1 ±1} +1

Table 3. k = 1 SO(4) vortices (left), k = 1 SO(5) or k = 2 SO(4) (right).

µ̃1 µ̃2 µ̃3 QZ2

±{1
2

1
2

1
2} ±1

±{1
2

1
2 −1

2} ∓1

µ̃1 µ̃2 µ̃3 QZ2

0 0 0 −1

±{1 0 0} +1

±{1 1 0} −1

±{1 −1 0} −1

±{1 1 1} +1

±{−1 1 1} +1

Table 4. k = 1 SO(6) cases (left), k = 1 SO(7) or k = 2 SO(6) (right).

while those of G′ = USp(2M) theory correspond to non-trivial elements of

π1

(
USp(2M) ×U(1)

Z2

)

= Z . (2.52)

The vortices in G′ = SO(N) carry a Z2 charge in addition to the usual additive vortex

charges. The Z2 charge can be seen from the dual weight vector ~̃µ. As a simple example,

let us consider the case of SO(4). The dual weight vectors are listed in table 3. Let

us compare two states: namely (µ̃1, µ̃2) = (1/2, 1/2) and (µ̃1, µ̃2) = (1/2,−1/2). The

difference between them is δ(µ̃1, µ̃2) = (0, 1): thus one of them can be obtained from the

other by a 2π rotation in the (24)-plane in SO(4). As a path from unity to a 2π rotation

is a non-contractible loop, they have different Z2 charges.

On the other hand, the difference between (µ̃1, µ̃2) = (1/2, 1/2) and

(µ̃1, µ̃2) = (−1/2,−1/2) is δ(µ̃1, µ̃2) = (1, 1), hence this is homotopic to the trivial

element of Z2. Therefore, the vortices can be classified by the Z2-parity, QZ2 = ±1. In

figures 1 and 4, the dark points correspond to vortices with QZ2 = +1 while the empty

circles correspond to those with QZ2 = −1.

The Z2 parity of each special point is defined, in general, as follows:

QZ2(k
+
i , k−

i ) = (+)
P

i k+
i × (−)

P

i k−
i = (−)

P

i k−
i , (2.53)

or equivalently in terms of the weight vectors:

QZ2(H
(µ̃i,...,µ̃M )
0 ) = (−)νM−

P

i µ̃i . (2.54)

2.4 Local versus semi-local vortices

One is often interested in knowing which of the moduli parameters describe the so-called

local (or the ANO-) vortices [1, 2]), which have the profile functions with exponential tails.
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For example, the thoroughly studied U(N) non-Abelian vortices are of the local type when

the model has a unique vacuum: this is indeed the case when the number of flavors is the

minimal one, i.e. just sufficient for the color-flavor locked vacuum (NF = N Higgs fields in

the N representation of SU(N)). For NF greater than N , the vacuum moduli space contains

continuous moduli GrNF,N ≃ SU(NF)/[SU(NF−N)×SU(N)×U(1)] and, as a consequence,

the generic non-Abelian vortex solution is of the “semi-local” type [3, 46], with power-like

tails.8 A characteristic feature of the semi-local vortices is their size moduli, which are non-

normalizable [17, 18]. A lesson from the U(N) non-Abelian vortices is that the semi-local

vortices become local (ANO-like) vortices, when all the size moduli are set to zero.

Our model with G′ = SO(N) or USp(2M), even with our choice NF = N , that is the

minimum number of flavors that allows for a color-flavor locked vacua, possesses always

a non-trivial vacuum moduli space. In fact, in the class of theories considered here, its

dimension is given by the following general formula

dimC [Mvac] = NNF − dimC

[

U(1)C ×G′C
]

> 0 . (2.55)

This strongly suggests that even for NF = N , generic configurations are of the “semi-local”

type. The Kähler metric and its potential on the vacuum moduli space have been obtained

in ref. [22].

The distinction between local and semi-local vortices can be made by using the moduli

matrix. In order to see this, the asymptotic behavior of the configurations must be clarified.

First note that the vacuum moduli spaces of our models are Kähler manifolds Mvac and

our gauge theories reduce to non-linear sigma models whose target space isMvac, when the

gauge couplings are sent to infinity. In this limit, vortices generally reduce to the so-called

sigma model lumps [47] (sometimes also called two-dimensional Skyrmions or sigma model

instantons) characterized by

π2(Mvac) ,

i.e. a wrapping around a 2-cycle insideMvac. By rescaling sizes, taking the strong coupling

limit can be interpreted as picking up the asymptotic behavior, and thus, even for a finite

gauge coupling, asymptotic configurations of semi-local vortices are well-approximated by

lumps [46].

Consider the lump solutions of the non-linear sigma model onMvac. Let us take holo-

morphic G-invariants {II
G} as inhomogeneous coordinates of Mvac and denote its Kähler

potential by K = K(IG, I∗G). A lump solution is then given by a holomorphic map

z ∈ C → II
G = f I(z) ∈Mvac . (2.56)

with single-valued functions {f I(z)}. For finite-energy solutions, the boundary |z| = ∞
is mapped to a single point II

G = vI ∈ Mvac. So the maps {f I(z)} are asymptotically

of the form

f I(z) = vI +
uI

z
+O

(
z−2
)
, uI ∈ C . (2.57)

8“Local vortex” and “semi-local vortex” are clearly misnomers, but as they seem to have stuck among

the experts in the field, we shall use them in this paper.
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The corresponding energy density E has a power behavior

E = 2KJJ̄(IG, ĪG) ∂IJ
G(z) ∂̄Ī J̄

G(z̄) =
2

|z|4 KJJ̄(v, v̄)uJ ūJ̄ +O
(
|z|−5

)
, (2.58)

where we assume that {II
G} is a local coordinate system in the vicinity of the point

II
G = vI and the manifold is smooth at that point. As mentioned above, this asymptotic

behavior is valid for that of the vortices as well. Since {II
G} ≃ {Ii

G′}/U(1)C in the case

G = G′ ×U(1), the holomorphic maps and the moduli matrix are related by

{f I(z)} ≃ {IG′(z)}/ ∼ , (2.59)

where “∼” is defined as the equivalence relation

Ii
G′(z) ∼ P (z)Ii

G′(z) , with P (z) ∈ C[z] . (2.60)

Hence, the asymptotic tail of the configurations is generically power-like, i.e. the generic

vortices are of the semi-local type.

Although this is in general the case, it might happen that all the holomorphic functions

{Ii
G′(H0(z))} have common zeros and that the quotient above is ill-defined. In such a case,

from the point of view of f I(z), we completely lose the information about the common

zeros accompanied by some vorticity. Namely, the signature of the corresponding vortices

vanishes from their polynomial tails and π2(Mvac) becomes trivial.9 Specifically, it can

happen that all the holomorphic invariants are proportional to a polynomial P (z):

f I(z) = const. ⇐ Ii
G′(H0(z)) = P (z)

ni
n0 for all i , (2.61)

or possibly that there exists only one such holomorphic invariant. In the case of the U(N),

with NF = N i.e. the model considered earlier,Mvac is just a single point. Even in the SO

and USp cases, we do not consider any non-trivial element of the second homotopy group

ofMvac but we fix a point ofMvac at |z| → ∞. Therefore, one must return to the master

equations to examine the asymptotic behavior. The moduli matrix satisfying eq. (2.61)

could be transformed to a trivial one such that Ω0 = 1N in eqs. (2.24) and (2.25), by using

an extended V -transformation allowing for negative powers of z, with a singular determi-

nant det (V (z)) = P (z)−1. After this operation the master equation would take the form

of a Liouville-type equation with point-like sources;10 hence the asymptotic tail is indeed

exponential. In other words, the conditions (2.61) mean that the (static) vortex is decou-

pled from any massless mode in the Higgs vacuum and hence the dominant contribution

to its configuration comes from massive modes in the bulk. The corresponding vortices are

purely of local type. Conversely, we can clearly identify a local vortex and its position by

9The price of the loss of vorticity in the map (2.56) is the appearance of small lump singularities, which

manifest themselves as spikes (delta functions) in the energy density.
10In the well-known Abelian case G = U(1), this transformed master equation is nothing but Taubes’

equation. This transformation for non-Abelian cases means that all information about orientational moduli

are also localized at the zeros, in other words, the moduli matrix can be reconstructed from the data at the

zeros in the case of local vortices [24]. For semi-local vortices, this is clearly not the case.
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looking at common zeros, although a composite state of a semi-local vortex and a local

vortex also has a polynomial tail. The above observations can briefly be summarized as

follows. The asymptotic behavior of a vortex is classified by the lightest modes in the bulk

coupled to its configuration. To summarize, a vortex is necessarily of the local type, when

the vacuum moduli space is just a point (i.e. a unique vacuum). Semi-local vortices are

present only if the vacuum moduli space is non-trivial (i.e. having continuous moduli).

Once we have clarified the origin of the of polynomial tails, it is easier to identify

the non-normalizable modes and the results in ref. [22] for lumps can be readily applied

to vortices. Semi-local vortices always have non-normalizable moduli, which live on the

tangent bundle of the moduli space of vacua11

(vI , uI) ∈ TMvac . (2.62)

In our case, G′ = SO(N),USp(N), with the common U(1) charge of the scalar fields

H, all the GC invariants II
G(H) can be written using the meson ISO,USp in eq. (2.21). For

instance, since Tr[ISO,USp] 6= 0 in the chosen vacuum, we can construct

I
(r,s)
G (H) ≡ (ISO,USp(H))rs

Tr[ISO,USp(H)]
=

(
HTJH

)r
s

Tr[HTJH]
, 1 ≤ r ≤ s ≤ N . (2.63)

The condition for (winding k) local vortices is thus:

ISO,USp(H0) = HT
0 (z)JH0(z) =

(
k∏

i=1

(z − zi)
2

n0

)

J . (2.64)

This will be called the strong condition, in contrast to the weak condition (2.22) which

characterizes a more general class of solutions including semi-local vortices.

In the next section we will discuss moduli spaces defined by requiring the strong con-

dition. One can regard this condition being physically required by modifying our model

in such a way that the continuous directions of the vacuum are indeed being lifted. For

instance, it is not difficult to add an appropriate superpotential δW to our model, intro-

ducing a chiral multiplet A which is a traceless N -by-N matrix taking value in the usp (so)

algebra in the SO case (USp case), viz. ATJ = JA, and having a U(1) charge −2:

δW ∝ Tr[AHTJHJ ] , (2.65)

however such a term would nevertheless reduce the amount of supersymmetry. As we will

see in some cases, the strong condition can give rise to singularities in the moduli space,

which will be inherited into the target space of an effective action for the local vortices.

3 Local vortices and their orientational moduli

In this section we study local non-Abelian vortices in detail leaving the analyses of semi-

local vortices for the next section. The local non-Abelian vortices carry non-Abelian charges

11vI are nothing but vacuum moduli and all of the uI ’s are not always independent and consist of overall

semi-local moduli like an overall size modulus. The interpretation as a tangent bundle can be derived

from eq. (2.57)

– 13 –



J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

under the color-flavor symmetry group. The corresponding moduli parameters are referred

to as the internal orientations (or orientational modes) of the vortices. Let us consider a

single local vortex. The strong condition is

HT
0 (z)JH0(z) = (z − z0)

2
n0 J . (3.1)

The parameter z0 represents the vortex center and is a part of the vortex moduli. Fixing

z0 = 0, the solutions to the above condition still possess the orientational modes. In

fact, once a moduli matrix satisfying eq. (3.1) has been found, other solutions are readily

obtained by acting on it with the color-flavor symmetry transformations G′
C+F:

H ′
0(z) ≡ H0(z)U , U ∈ G′

C+F . (3.2)

However, H0(z) is defined only modulo V -equivalence, therefore if there exists a V -

transformation such that

V (z)H ′
0(z) = H0(z) , V (z) ∈ G′C , (3.3)

then H ′
0(z) and H0(z) should be regarded as physically the same configuration. Therefore,

in order to identify the orientational moduli, one needs to identify the flavor rotations

which cannot be undone by any V -transformation. In the case of k = 1 local vortices

with G′ = SO(2M),USp(2M), this discussion is sufficient to describe the moduli spaces

completely. In the SO(2M + 1) case, and for higher-winding vortices, however, this is not

the case. It is there that the moduli matrix formalism shows its power.

3.1 The single (k = 1) local vortex for G′ = SO(2M),USp(2M)

The strong condition (3.1) with n0 = 2 is satisfied by all special moduli matrices given in

eq. (2.36). For simplicity, let us start with the moduli matrix described by the dual weight

vector ~̃µ = (1
2 , 1

2 , . . . , 1
2), i.e.

H
( 1
2
, 1
2
,..., 1

2
)

0 (z) = diag( z, . . . , z
︸ ︷︷ ︸

M

, 1, . . . , 1
︸ ︷︷ ︸

M

) . (3.4)

The color-flavor rotation G′
C+F generates other moduli matrices in a G′

C+F/U(M)-orbit.

It is obvious that the action of the U(M) subgroup of G′ = SO(2M),USp(2M)

U0 =

(

uT

u−1

)

∈ G′
C+F , u ∈ U(M) , (3.5)

can be undone by a V -transformation (2.26) due to the fact that H
( 1
2
,..., 1

2
)

0 U0 =

U0H
( 1
2
,..., 1

2
)

0 ≃ H
( 1
2
,..., 1

2
)

0 . Therefore, we find the orientational moduli as parametrizing

the following spaces [23]

Mori =
G′

C+F

U(M)C+F
=

SO(2M)

U(M)
or

USp(2M)

U(M)
, (3.6)
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both of which are Hermitian symmetric spaces [48, 49]. The real dimension of the moduli

spaces is M(2M ∓ 1) −M2 + 2 = M(M ∓ 1) + 2. Where the additional dimension two

corresponds to the position of the vortex.

In order to see explicitly G′
C+F/U(M), let us take the following element of G′

U =

(

1M −b†A,S

1M

)





√

1M + b†A,SbA,S
(√

1M + bA,S b†A,S

)−1






(

1M

bA,S 1M

)

, (3.7)

where bS (bA) is an arbitrary M -by-M symmetric (antisymmetric)12 matrix for the SO(2M)

(USp(2M)) case. The first two matrices in U can be eliminated by V -transformations, such

that the action of U brings the moduli matrix H
( 1
2
,..., 1

2
)

0 to the following form

H
( 1
2
,..., 1

2
)

0 (z)U
V→ H

( 1
2
,..., 1

2
)

0 (z; bA,S) ≡
(

z1M

bA,S 1M

)

=

(

z1M

1M

)(

1M

bA,S 1M

)

. (3.8)

We denote the patch described by the above moduli matrix the (1
2 , . . . , 1

2)-patch of the

manifold G′
C+F/U(M). The complex parameters in the M ×M matrix bA,S are the (local)

inhomogeneous coordinates of Mori. Indeed, the moduli matrix has M(M∓1)
2 + 1 complex

parameters which is in fact the dimension of the moduli space as will be demonstrated in

section 4.1. This in turn implies that, in the present case, the moduli space for the local

vortex is entirely generated by a G′ orbit, except for the position moduli.

By a similar argument we find 2M patches, starting from the special points
~̃µ = (±1

2 , . . . ,±1
2) given in eq. (2.36). Indeed, this can easily be done by means of

permutations, e.g.

H
(
0

r
︷ ︸︸ ︷

− 1
2
,...,− 1

2
,

M−r
︷ ︸︸ ︷
1
2
,..., 1

2
)(z; bA,S) = P−1

r H
( 1
2
,..., 1

2
)

0 (z; bA,S)Pr , (3.9)

where the permutation matrix is

Pr ≡








0r ǫ1r

1M−r 0M−r

1r 0r

0M−r 1M−r








, PT
r JPr = J . (3.10)

One can easily check that the constraint

[

P−1
r H

( 1
2
,..., 1

2
)

0 Pr

]T

J

[

P−1
r H

( 1
2
,..., 1

2
)

0 Pr

]

= zJ ,

is indeed satisfied. The determinant of the permutation matrices is

det Pr = (−ǫ)r . (3.11)

12Similar symbols will be used below to indicate a symmetric or antisymmetric constant matrix.
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Note that Pr is an element of G′ iff detPr = 1.

The problem now is to find the transition functions among the 2M patches just found.

As in the case of U(N) vortices [25], the transition functions between the (1
2 , . . . , 1

2)-patch

and the (−1
2 , . . . ,−1

2
︸ ︷︷ ︸

r

, 1
2 , . . . , 1

2
︸ ︷︷ ︸

M−r

)-patch are obtained by using the V -transformation (2.26):

H
(
0

r
︷ ︸︸ ︷

− 1
2
,...,− 1

2
,

M−r
︷ ︸︸ ︷
1
2
,..., 1

2
)(z; b′A,S) = V (z)H

( 1
2
,..., 1

2
)

0 (z; bA,S) . (3.12)

By solving the above equation, one obtains the transition functions between the two patches

having det Pr = 1 as

b′1 = ǫ b−1
1 , b′2 = b−1

1 b2 , b′3 = b3 + ǫ bT
2 b−1

1 b2 , (3.13)

where bA,S is decomposed to an r-by-r matrix b1, an r-by-(M − r) matrix b2 and an

(M − r)-by-(M − r) matrix b3 defined as follows

bA,S =

(

b1 b2

−ǫ bT
2 b3

)

, bT
1,3 = −ǫ b1,3 , (3.14)

and similarly for b′i. The technical details will be postponed till the next section. This

derivation of the quotient space G′/U(M) in the moduli matrix formalism, can be related

to the ordinary derivation with 2M dimensional vector spaces which we call the orientation

vectors. See appendix B for the details.

As shown in eq. (3.11), detPr is always +1 in the case of G′ = USp(2M), while both

+1 and −1 are possible for G′ = SO(2M). Hence, all 2M patches can be connected for

G′ = USp(2M). However, two patches which are related by the permutation Pr with

det Pr = −1 are disconnected since such a permutation is not an element of SO(2M) but of

O(2M) and thus there does not exist any transition function (V -transformation). There-

fore, we conclude that the patches for G′ = SO(2M) are divided into two disconnected parts

according to the sign of det Pr = ±1. In summary, the moduli space of the k = 1 vortex is

MUSp(2M) = C×Mori
USp(2M) = C× USp(2M)

U(M)
, (3.15)

MSO(2M) = C×Mori
SO(2M) =

(

C× SO(2M)

U(M)

)

+

∪
(

C× SO(2M)

U(M)

)

−
(3.16)

with C being the position moduli. The doubling of the moduli space in the SO(N) case

reflects the presence of a Z2 topological charge for the vortex (see eq. (2.51)), so that

Mori
SO(2M),+ ∩Mori

SO(2M).− = ∅.
Furthermore, the structure of these moduli spaces seems to be consistent with the

GNOW duality [43]. The dual of USp(2M) is the Spin(2M +1) group, with a single spinor

representation of multiplicity, 2M . In the case of SO(2M), its GNOW dual is Spin(2M),

where the smallest irreducible representations are the two spinor representations of

chirality ±, each with multiplicity 2M−1. Actually, the quotient SO(2M)/U(M) is just a
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)
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SU(2)/U(1)−

CP 1

Figure 2. The moduli spaces of the k = 1 local vortex.

space for a pure spinor in 2M dimensions [50]. Finally, by embedding the vortex theory

into an underlying theory with a larger gauge group which breaks to the group SO(2M) or

to USp(2M), what is found here for the vortex moduli and their transformation properties

can be translated into the properties of the monopoles appearing at the ends, through

the homotopy matching argument [16, 26]. These aspects will be further discussed in a

separate article [51].

We have introduced the dual weight diagram ~̃µ to represent the special moduli matrices

(representative vortex solutions), H
(µ̃1,µ̃2,...,µ̃M )
0 (z) in section 2.2. Now we reinterpret them

in a slightly different way. The lattice points of the diagram can be thought of as a

representation of the patches of the space, where the origin of the local coordinates are

just given by these special points. For example, in the case of G′ = SO(2M),USp(2M),

the lattice point ~̃µ = (1
2 , . . . , 1

2) represents the patch given in eq. (3.8).13 Next we link the

lattice points painted with the same color, namely the patches related by the permutation

Pr with detPr = +1. The structure of the moduli space discussed above can easily be read

off from the dual weight diagram obtained this way.

The dual lattices formed by special points representatives of connected patches are

equal to lattices of irreducible representations of the dual group. On the contrary, two

disconnected parts of the moduli space (see MSO(2M) in eq. (3.16)) nicely correspond to

distinct irreducible representations (two spinor representations of opposite chiralities). In

the case of composite vortices, we will find irreducible representations obtained by tensor

compositions of the fundamental ones. This picture holds for all the explicit cases we could

check (low rank groups), and is an important hint of a “semi-classical” emergence of the

GNOW duality from the vortex side.

3.1.1 Examples: G′ = SO(2),SO(4),SO(6) and G′ = USp(2),USp(4)

Let us illustrate the structure of the moduli spaces in some simple cases, see figure 2.

The U(1) × SO(2) ≃ U(1)+ × U(1)− theory has two types of ANO vortices. One type

is characterized by π1(U(1)+) and the other of π1(U(1)−). They are described by the

following moduli matrices

H
( 1
2
)

0 =

(

z − z1 0

0 1

)

, H
(− 1

2
)

0 =

(

1 0

0 z − z2

)

. (3.17)

13This interpretation gives an intrinsic meaning to the special points . Furthermore, their number is

related (in many cases equal) to the Euler character of the moduli space.
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Because USp(2) ≃ SU(2), the G′ = USp(2) vortex is indeed identical to the U(2) vortex

which has been well-studied in the literature. The orientational moduli are CP 1 ≃ SU(2)
U(1) .

Note that the special configurations H
(− 1

2
)

0 = diag(1, z) and H
( 1
2
)

0 = diag(z, 1) are fixed

points of the U(1) ⊂ SU(2) group generated by σ3: U(1) = diag(eiθ, e−iθ). One can move

from H
(− 1

2
)

0 to H
( 1
2
)

0 by using SU(2)/U(1) and vice versa [25]:

(

1 0

0 z

)

︸ ︷︷ ︸

H
(− 1

2 )

0

(

1 a

0 1

)

︸ ︷︷ ︸

SU(2)/U(1)

=

(

0 1/a′

−a′ z

)

︸ ︷︷ ︸

V -transformation

(

z 0

0 1

)

︸ ︷︷ ︸

H
( 1
2 )

0

(

1 0

a′ 1

)

︸ ︷︷ ︸

SU(2)/U(1)

, with aa′ = 1 . (3.18)

The corresponding dual weight diagram, shown in the bottom-left of figure 2, represents

the fundamental multiplet of the dual SU(2) group. It can be also interpreted as the toric

diagram of CP 1.

Next consider G′ = SO(4) vortices. We have two different vortices which are charac-

terized by the π1(SO(4)) = Z2-parity. The orientational moduli again turn out to be

CP 1 ≃ SO(4)

U(2)
≃ SU(2)× SU(2)

U(1) × SU(2)
≃ SU(2)

U(1)
. (3.19)

For instance, we find a similar relation between H
(− 1

2
,− 1

2
)

0 and H
( 1
2
, 1
2
)

0

(

12

z12

)

︸ ︷︷ ︸

H
(− 1

2 ,− 1
2 )

0

(

12 bA

12

)

︸ ︷︷ ︸

SO(4)/U(2)

=

(

b′A
−1

−b′A z12

)

︸ ︷︷ ︸

V -transformation

(

z12

12

)

︸ ︷︷ ︸

H
( 1
2 ,12 )

0

(

12

b′A 12

)

︸ ︷︷ ︸

SO(4)/U(2)

, with bAb′A = 12 . (3.20)

The two special points (the two sites of the dual weight diagram) are again fixed points of

the U(1) symmetry, thus the dual weight diagram can be thought of as the toric diagram

for CP 1. There are two CP 1’s in this case, see figure 2. Furthermore, the diagram can

alternatively be thought of as representing the reducible (1

2
,0) ⊕ (0, 1

2
) representation of

the spinor Spin(4), which is the dual of SO(4).

The diagram for the G′ = USp(4) case consists of a single structure where all the 4

points are connected

Mori
USp(4) =

USp(4)

U(2)
. (3.21)

This is consistent with the interpretation of the diagram in figure 2 as being the weight

lattice of the irreducible spinor representation 4 of SO(5), which is indeed the GNOW-dual

of USp(4) [43].

The last example is G′ = SO(6) (see figure 3). This is another neat example where

the orientational moduli are a well-known manifold and its dual weight diagram can be

identified with a toric diagram. The orientational moduli space is

Mori
SO(6) =

SO(6)

U(3)
≃ SU(4)

U(1) × SU(3)
≃ CP 3 . (3.22)
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Figure 3. The moduli spaces of the k = 1 local vortex in G′ = SO(6).

The corresponding dual weight diagram is shown in figure 3. There are two CP 3’s similar

to the case of G′ = SO(4). From the toric diagram, one can easily find the CP 1 and CP 2

subspaces which appear as edges and faces, respectively. Again these two separate parts of

the moduli spaces can be interpreted as the two spinor representations, 4⊕4∗, of opposite

chiralities of the dual group

Spin(6) ∼ SU(4) .

3.2 The doubly-wound (k = 2) local vortex in G′ = SO(2M) and G′ = USp(2M)

theories

In the case of G′ = SO(2M),USp(2M) theories, the strong condition for the k = 2 vortices

located at z = z1 and z = z2 is of the form

H0(z)TJH0(z) = P (z)J , P (z) ≡ (z − z1)(z − z2) , (3.23)

which can equivalently be parametrized as

P (z) = (z − z0)
2 − δ , z0 =

z1 + z2

2
, δ =

(
z1 − z2

2

)2

. (3.24)

Here z1 and z2 stand for the vortex positions which are where the scalar field becomes zero,

while z0 and δ are the center of mass and the relative position (separation) of two vortices,

respectively. Several examples of dual weight diagrams are given in figure 4.

We will now proceed to the doubly-wound (k = 2) vortices in U(1)×G′ gauge theories,

with G′ = SO(2M) or USp(2M). The SU(N)C+F-orbit structure of the moduli space of k

vortices in U(N) gauge theory was studied in ref. [27] using the Kähler quotient construc-

tion of Hanany and Tong [7]. Here we study the orbit structure of the moduli space of k = 2

vortices for G′ = SO(2M) or USp(2M) more systematically by using the moduli matrix

formalism. Before going into the detail, let us recall the properties of the k = 2 ANO vor-

tices in the usual Abelian-Higgs model. They can be also studied using the moduli matrix

which, in this case is simply a holomorphic function in z, i.e. a second-order polynomial:

HANO
0 (z) = z2 − αz + β = (z − z1)(z − z2) , (3.25)
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SO(2)

1−1 0

SO(4)

(1, 1)
SO(6)
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(1, 0)
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1−1 0

USp(4)
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Figure 4. The special points for the k = 2 vortex.

with α = z1 + z2 and β = z1z2. Since these two vortices are indeed identical, we cannot

distinguish them. In fact, the moduli matrix is invariant under the exchange of z1 and z2.

Thus the corresponding moduli space is the symmetric product of C:

Mk=2
ANO =

C× C

S2
≃ C

2/Z2 . (3.26)

There is a nice property of the moduli matrix for the local vortices. Suppose H i
0 satisfies

the strong condition for ki local vortices, namely (H i
0)

TJH i
0 = Pi(z)J with a polynomial

function of the ki-th power. Then the product of two matrices H
(i,j)
0 ≡ H i

0H
j
0 automatically

satisfies the strong condition for k = ki + kj local vortices: (H
(i,j)
0 )TJH

(i,j)
0 = Pi(z)Pj(z)J .

In this way we can construct the moduli matrices for the higher winding number vortices

from those with the lower winding numbers, which was found in U(N) vortices [15, 16].

This feature implies that the moduli space for separated local vortices can be constructed

as a symmetric product of copies of those of a single local vortex:

Mk
sep ≃

(C×Mori)
k

Sk
(3.27)

The consideration above is valid when the component vortices are separated even for small

vortex separations. When two or more vortex axes coalesce, the symmetric product de-

generates, and the topological structure of the moduli space undergoes a change. Thus the
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coincident case must be treated more carefully. We shall study the case of two coincident

vortices in detail in the next section.

Our study of the moduli matrix in the present work is complete up to k = 2 vortices

(k = 1 for odd SO groups). The problem of a complete classification of the moduli matrix

for the higher winding number (k ≥ 3) is left for future work.

The product of moduli matrices, especially for the G′ = SO(N) case, gives us a natural

understanding in the following sense. The single G′ = SO(N) vortex has a Z2-parity +1

or −1. They are physically distinct, hence the k = 2 configuration is expected to be

classified into three categories by the Z2-parity of the component vortex as (Q
(1)
Z2

, Q
(2)
Z2

) =

(+1,+1), (+1,−1), (−1,−1). The total Z2-parity of the configurations with (Q
(1)
Z2

, Q
(2)
Z2

) =

(+1,+1), (−1,−1) is +1 while that of (Q
(1)
Z2

, Q
(2)
Z2

) = (+1,−1) is −1. Therefore, the former

and the latter are disconnected. An interesting question is whether (Q
(1)
Z2

, Q
(2)
Z2

) = (+1,+1)

and (−1,−1) are connected or not. The naive answer would be yes, because the two

solutions represent two equivalent objects from the topological point of view. However,

the true answer, as we will show, is subtler, and is different for the local and semi-local

cases. For the latter case, the two moduli spaces are smoothly connected and in fact are

the same space. More interestingly, in the local case they represent two different spaces

which intersect at some submanifold. As we shall see, this result is compatible with the

interpretation that weight lattices formed by connected special points are in correspondence

with irreducible representations of the dual group [21].14

The patch structure for the k = 2 local vortices in generic G′ = SO(2M),USp(2M) the-

ories is rather complex. In this subsection, we just present the result without details. The

result will be discussed again when we shall consider the generic configurations satisfying

the weak condition (2.22) in section 4. The moduli matrix in a generic patch takes the form

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z) =








P (z)1r 0 0 0

B1(z) (z − z0)1M−r + Γ11 0 Γ12

A(z) C1 1r C2

B2(z) Γ21 0 (z − z0)1M−r + Γ22








, (3.28)

A(z) = a1;A,S z + a0;A,S + λS,A , (3.29)
(

B1(z)

B2(z)

)

= −
(
(z − z0)12(M−r) + Γ

)
J2(M−r)

(

CT
1

CT
2

)

, (3.30)

Γ ≡
(

Γ11 Γ12

Γ21 Γ22

)

, (3.31)

where ai;A,S (i = 0, 1) is an r × r constant (anti-)symmetric matrix, Ci is an r × (M − r)

constant matrix and we have defined

λS,A ≡ −
1

2
(C1, C2)J2(M−r)

(

CT
1

CT
2

)

, J2(M−r) ≡
(

1M−r

ǫ1M−r

)

. (3.32)

14The fact that there is no topology which can explain this disconnection somehow enforces our interpre-

tation in terms of the dual group.
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The strong condition is now translated into the following form

ΓTJ2(M−r) + J2(M−r)Γ = 0 , Γ2 = δ 12(M−r) , (Tr Γ = 0) . (3.33)

Solutions to this condition for separated vortices are discussed in appendix C.1. It is a

hard task to study the moduli space collecting all the patches, for generic SO(2M) and

USp(2M). A complete analysis of the moduli space in several cases will be given later.

Some of the moduli parameters in eq. (3.28) are the Nambu-Goldstone (NG) modes

associated with global symmetry breaking and the rest are interpreted as so-called quasi-

NG modes [52]. The former is, for instance, the overall orientation of the two vortices and

the center of mass. The relative separation between two local vortices (C) and some of the

relative orientational modes are typical examples of the latter. For two coincident vortices

the situation is subtler, but in general there will still be a set of NG modes generated by

the G′
C+F symmetry, while the remaining modes are quasi-NG modes. As we will see in

the following, the number of the quasi-NG modes is
[

M
2

]
or
[

M
2

]
−1 for SO(2M) and M for

USp(2M), which was actually difficult to find without using the moduli matrix formalism.

3.2.1 G′
C+F-orbits for coincident vortices

Let us now specialize to the case of the k = 2 co-axial (axially symmetric) vortices. The

details of the analysis can be found in appendix C.2. Consider a special moduli matrix

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 ) = diag

(
z2, . . . , z2

︸ ︷︷ ︸

r

, z, . . . , z
︸ ︷︷ ︸

M−r

, 1, . . . , 1
︸ ︷︷ ︸

r

, z, . . . , z
︸ ︷︷ ︸

M−r

)
. (3.34)

Clearly, this vortex breaks the color-flavor symmetry as

SO(2M)→ U(r)× SO(2(M − r)) , USp(2M)→ U(r)×USp(2(M − r)) . (3.35)

Thus depending on r (r = 0, 1, . . . ,M), we have M + 1 different G′
C+F orbits. Each orbit

reflects the NG modes associated with the symmetry breaking. The different orbits are

connected by the quasi-NG modes which are unrelated to symmetry. The total space is

stratified with G′
C+F-orbits as leaves. To see this, let us consider the following moduli

matrix (for G′ = SO(2M)):

H0 =








z21M−2

z12 iσ2λ

1M−2

z12








= V −1








z21M−2

z212

1M−2

−iσ2λ
−1z 12








, (3.36)

V =








1M−2

z12 −iσ2λ

1M−2

−iσ2λ
−1 02







∈ SO(2M) . (3.37)
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We can always take λ to be non-negative and real R>0 by means of the color-flavor rotation

H0 → U−1H0U , U =








1M−2

a12

1M−2

a−112







∈ SO(2M) . (3.38)

In two limits λ → 0 and λ → ∞, the moduli matrix (3.36) reduces to the special ma-

trix (3.34) with r = M − 2 and r = M , respectively. The orbit with intermediate values

0 < λ <∞ corresponds to the symmetry breaking pattern

SO(2M)

U(M − 2)×USp(2)
. (3.39)

In fact, the moduli matrix (3.36) is left invariant under the USp(2) ∈ SO(2M)C+F

transformations

U =








1M−2

g−1

1M−2

gT







∈ SO(2M) , gT(iσ2)g = iσ2 . (3.40)

Therefore, the quasi-NG mode λ connects two different SO(2M)C+F orbits:

SO(2M)

U(M)
× Z2

λ→0←− R>0 ×
SO(2M)

U(M − 2)×USp(2)
× Z2

λ→∞−→ SO(2M)

U(M − 2)× SO(4)
, (3.41)

where the Z2 factor indicates a permutation, P−1H0P with P ∈ O(2M)/SO(2M). This

permutation does not belong to the SO(2M)C+F symmetry, nonetheless it generates a

new moduli matrix solution. We thus see, as explained before, how the moduli space of

coincident vortices of positive chirality is generically made of two disconnected parts. If

M − r 6= 0, such a permutation acts trivially or can be pulled back by an SO(2M) rotation

on H0. At these special points the two copies coalesce. Nonetheless we must interpret the

two spaces as defining two different composite states of vortices: (+1,+1) and a (−1,−1).

This interpretation is fully consistent if one studies interactions in the range of validity of

the moduli space approximation [58]. It is easy to realize that, in this approximation, the

chirality of each of the component vortices is conserved: two composite states of vortices

(+1,+1) and (−1,−1) do not interact, even if their trajectories in the moduli space pass

through an intersection submanifold15

At the intersection, the dimension of the manifold always reduces by

[dim R>0 − dim USp(2)]− (−dim SO(4)) = 4 .

15The question if (or how) these vortices interact beyond the moduli space approximation, and in partic-

ular at the quantum level, is an interesting open question. See also a comment related to this issue at the

end of the Conclusion.

– 23 –



J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

This can easily be extended to the following moduli matrix, with t, α ∈ Z≥0

H0 =












z21t

z212α

z1M−t−2α

0 1t

zΛ̃ 12α

0 z1M−t−2α












, Λ̃ =






λ̃1J̃2p̃1

. . .

λ̃sJ̃2p̃s




 , (3.42)

where J̃2p̃i
is the invariant tensor of USp(2p̃i) and

α =

s∑

i=1

p̃i , t + 2α ≤M , 0 < λ̃i < λ̃i+1 . (3.43)

An arbitrary patch (3.28) with δ = 0 in the SO(2M) case, can be brought onto the above

form as explained in appendix C.2. The set of numbers (t, s, p̃i) and the quasi-NG modes λi

are, of course, independent of r which indicates the patch which we take as a starting point.

Note that this is invariant with respect to the group
∏s

i=1 USp(2p̃i) ∈ SO(2M)C+F

U = block-diag
(

1t, g
−1
2p̃1

, . . . , g−1
2p̃s

,1M−t−2α,1t, g
T
2p̃1

, . . . , gT
2p̃s

,1M−t−2α

)

, (3.44)

with gT
2p̃i

J̃2p̃i
g2p̃i

= J̃2p̃i
. Therefore, the local structure of the SO(2M)-orbit has the form

R
s
>0 ×

O(2M)

U(t)×∏s
i=1 USp(2p̃i)×O(2u)

, with t + u + 2

s∑

i=1

p̃i = M . (3.45)

When we take the limit λ̃1 → 0, a subgroup U(t) × USp(2p̃1) of the isotropy group gets

enhanced to U(t+2p̃1) and the orbit shrinks, thus the local structure around the new orbit

is given by changing the indices in eq. (3.45) as follows

(s, t, u; p̃1, p̃2, . . . , p̃s)
λ̃1→0→ (s′, t′, u′; p̃′i) = (s− 1, t + 2p̃1, u; p̃2, . . . , p̃s) . (3.46)

In the opposite limit where λ̃s →∞, another subgroup USp(2p̃s)× SO(2u) of the isotropy

group is getting enlarged to SO(2u + 4p̃s), hence the local structure around this new orbit

is obtained by

(s, t, u; p̃1, . . . , p̃s−1, p̃s)
λ̃s→∞→ (s′′, t′′, u′′; p̃′′i ) = (s− 1, t, u + 2p̃s; p̃1, . . . , p̃s−1). (3.47)

By choosing various t, p̃i and taking the limits λ̃i → 0,∞, we can reach all the points of the

moduli space. However, since these transitions are always induced by the 2p̃i × 2p̃i matrix

J̃2p̃i
, the patches with only an even number of z2’s in the diagonal element are connected.

Analogously, the patches with an odd number of z2’s are mutually connected. Nevertheless,

the former and latter remain disconnected and this of course is just a consequence of the

different chiralities (Z2 topological factor).
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SO(4m)
U(2)×SO(4m−4)

1

r
2m 2m− 2 2m− 4 2 0

2m− 1 2m− 3 3 1

SO(4m)
USp(2)×SO(4m−4)

SO(4m)
U(2m−1)×SO(2)

SO(4m)
U(2m−3)×SO(6)

SO(4m)
U(3)×SO(4m−6)

SO(4m)
U(1)×SO(4m−2)

SO(2M) = SO(4m)

SO(4m+2)
U(2m+1)

SO(4m+2)
U(2m−1)×SO(4)

SO(4m+2)
U(2m−1)×USp(2)

SO(4m+2)
U(3)×SO(4m−6)

r
2m + 1 2m− 1 2m− 3 3 1

2m 2m− 2 2 0

SO(4m+2)
U(1)×USp(2)×SO(4m−6)

SO(4m+2)
U(2m)×SO(2)

SO(4m+2)
U(2m−2)×SO(6)

SO(4m+2)
U(2)×SO(4m−2) 1

SO(2M) = SO(4m + 2)

SO(4m+2)
U(1)×SO(4m−2)

SO(4m)
U(1)×USp(2)×SO(4m−6)

SO(4m)
U(2m−3)×USp(2)×SO(2)

SO(4m+2)
U(2m−2)×USp(2)×SO(2)

SO(4m+2)
USp(2)×SO(4m−2)

Figure 5. Sequences of the k = 2 vortices in SO(4m) and SO(4m+2). The sites (circles) correspond

to the special orbits of eq. (3.36) and the links connecting them denote the insertion of the minimal

pieces λ̃iJ̃2 such as in eq. (3.42).

For instance, by inserting a minimal extension, i.e. the following piece, λ̃J̃2, the special

orbits in eq. (3.34) can sequentially be shifted as

diag(z2, . . . , z2, z2, z2, 1, . . . , 1, 1, 1) → diag(z2, . . . , z2, z, z, 1, . . . , 1, z, z) → · · ·
→ diag(z, . . . , z, z · · · , z) .

However, the connection pattern depends on whether SO(2M) = SO(4m) or SO(4m + 2),

see figure 5. At a generic point (p̃i = 1, s = m) where the color-flavor symmetry is

maximally broken the corresponding moduli spaces can locally be written as

Mk=2, ori
SO(4m),+ = R

m
>0 ×

SO(4m)

USp(2)m
× Z2 , (3.48)

Mk=2, ori
SO(4m),− = R

m−1
>0 × SO(4m)

U(1) ×USp(2)m−1 × SO(2)
, (3.49)
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Mk=2, ori
SO(4m+2),+ = R

m
>0 ×

SO(4m + 2)

U(1)×USp(2)m
× Z2 , (3.50)

Mk=2, ori
SO(4m+2),− = R

m
>0 ×

SO(4m + 2)

USp(2)m × SO(2)
. (3.51)

The two copies of the moduli space, in the case of positive chirality, intersect at some

submanifold if M 6= 1. The dimensions of these moduli spaces are summarized as

dimC

[

Mk=2, ori
SO(2M),±

]

= M2 −M . (3.52)

Taking the vortex position into account, the complex dimension of the full moduli space is

M2 −M + 2 which is nothing but twice the dimension of the k = 1 moduli space.

In the case of vortices in USp(2M) theory, we can bring a generic moduli matrix onto

the following form

H0 =












z21t

z21β

z1M−t−β

0 1t

zΛ̃ 1β

0 z1M−t−β












, Λ̃ =






λ̃11p̃1

. . .

λ̃s1p̃s




 (3.53)

with

β =

s∑

i=1

p̃i, t + β ≤M, 0 < λ̃i < λ̃i+1. (3.54)

This matrix is invariant under [
∏s

i=1 O(p̃i)] ∈ USp(2M)

U = block-diag
(

1t, g
−1
p̃1

, . . . , g−1
p̃s

,1M−t−β ,1t, g
T
p̃1

, . . . , gT
p̃s

,1M−t−β

)

, (3.55)

with gT
p̃i

gp̃i
= 1p̃i

. Therefore, the local structure around the USp(2M) orbit is given by

R
s
>0 ×

USp(2M)

U(t)× [
∏s

i=1 O(p̃i)]×USp(2u)
, with t + u +

s∑

i=1

p̃i = M . (3.56)

In the limit λ̃1 → 0, the local structures of the orbit changes according to

(s, t, u; p̃1, p̃2, . . . , p̃s)
λ̃1→0→ (s′, t′, u′; p̃′i) = (s− 1, t + p̃1, u; p̃2, . . . , p̃s) . (3.57)

On the other hand, in the opposite limit λ̃s →∞, the local structure of the orbit becomes

(s, t, u; p̃1, . . . , p̃s−1, p̃s)
λ̃s→∞→ (s′′, t′′, u′′; p̃′′i ) = (s− 1, t, u + p̃s; p̃1, . . . , p̃s−1) .(3.58)

Since the minimal insertion is a real positive number λ̃, all the special orbits are

connected, contrary to the case of the SO(2M) vortices. This is consistent with the fact

that there is no Z2-parity in the USp(2M) case.
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1−1 0

(0, 2) (1, 1) (2, 0)

1−1 0

SO(2) USp(2) ≃ SU(2)

Figure 6. The k = 2 local vortices for G′ = SO(2), USp(2).

At the most generic point where 0 < λ̃1 < · · · < λ̃M , the color-flavor symmetry is

broken down to the discrete subgroup Z
M
2 ,

R
M
>0 ×

USp(2M)

ZM
2

. (3.59)

We can read off the dimensions of moduli space for the k = 2 co-axial local USp(2M)

vortices from this

dimC

[

Mk=2,ori
USp(2M)

]

=
M

2
+

2M(2M + 1)

4
= M2 + M . (3.60)

3.2.2 Examples: G′ = SO(2),SO(4) and G′ = USp(2),USp(4)

k = 2 local vortices for G′ = SO(2),USp(2)

Let us first consider the G′ = SO(2) theory. Although there is no Z2-parity due to the fact

that π1(SO(2)) = Z, there are nevertheless two distinct classes of vortices characterized

by π1(U(1)+) and π1(U(1)−) with U(1) × SO(2) ≃ U(1)+ × U(1)−. Thus there are three

possible k = 2 configurations. (π1(U(1)+), π1(U(1)−)) = {(2, 0), (0, 2), (1, 1)}, see figure 6.

The corresponding moduli matrices are given by

H
(+1)
0 =

(

P (z) 0

0 1

)

, H
(−1)
0 =

(

1 0

0 P (z)

)

, H
(0)
0 =

(

z − z1 0

0 z − z2

)

. (3.61)

Clearly, z1 and z2 are not distinguishable in the first two matrices while they are in the

third matrix. This reflects the fact that the configuration consists of two identical vortices

and two different vortices, in the two respective cases. Therefore, the moduli space is made

of three disconnected pieces

Mk=2
SO(2) =M(2,0)

SO(2) ∪M
(0,2)
SO(2) ∪M

(1,1)
SO(2) , (3.62)

where these spaces are defined by

M(2,0)
SO(2) =

(

M(1,0)
SO(2) ×M

(1,0)
SO(2)

)

/S2 = (C× C)/S2 = C
2/Z2 , (3.63)

M(0,2)
SO(2) =

(

M(0,1)
SO(2) ×M

(0,1)
SO(2)

)

/S2 = (C× C)/S2 = C
2/Z2 , (3.64)

M(1,1)
SO(2) = M(1,0)

SO(2) ×M
(0,1)
SO(2) = C

2 . (3.65)

The Z2 factor gives rise to crucial differences in the interactions between these vortices.

For instance, a head-on collision of two identical local vortices in M(2,0)
SO(2) or M(0,2)

SO(2) leads
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(1, 1)

(1,−1)(−1,−1)

(−1, 1)
(0, 1)

(1, 0)

(0,−1)

(−1, 0)

Z2-parity: +1 Z2-parity: −1

(0, 0)
(0, 0)′

CP 1

CP 1

Figure 7. The patches of the k = 2 local vortices in G′ = SO(4).

to a 90 degree scattering, while such a collision of the two different local vortices living

in M(1,1)
SO(2) would be transparent, which yields opposite results for the reconnection of two

colliding vortex-strings [28]. Again, this result is a consequence of the fact that vortices

with different chiralities must be considered as different, and non-interacting objects.

The next example is G′ = USp(2). As was noted earlier the vortices in the

G′ = USp(2) theory are the ones thoroughly studied due to USp(2) = SU(2). The moduli

spaces including the patches and the transition functions for the k = 2 vortices, in terms

of the moduli matrix, are given in ref. [15, 16]. We shall not repeat the discussion here.

The result is [15, 16]

Mk=2,separated
SU(2) ≃ (C ×CP 1)2/S2,

Mk=2,coincident
SU(2) ≃ C×WCP 2

(2,1,1) ≃ C× CP 2/Z2 . (3.66)

The dual weight diagram for this case is shown in figure 6.

k = 2 local vortices for G′ = SO(4)

Let us now consider G′ = SO(4). As can be seen from figure 4, there are 9 special points

in the entire moduli space. Five out of them have QZ2 = +1, and the other four have

QZ2 = −1.

Note that the isomorphism SO(4) ≃ [SU(2)+ × SU(2)−]/Z2 can indeed be complex-

ified as

SO(4)C ≃ [SL(2, C)+ × SL(2, C)−]/Z2 ,

[U(1) × SO(4)]C/Z2 ≃ [GL(2, C)+ ×GL(2, C)−]/C
∗ . (3.67)

In fact, an arbitrary matrix X satisfying XTJX ∝ J can always be rewritten as

X = σ−1(A⊗B)σ = f+(A)f−(B) = f−(B)f+(A),

f+(A) = σ−1(A⊗ 12)σ, f−(B) = σ−1(12 ⊗B)σ, σ =






12

1

−1




 (3.68)
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where A,B ∈ GL(2, C) and f± define maps from GL(2, C)± to [U(1) × SO(4)]C/Z2. The

elements of GL(2, C)±, f±(A), are related by the odd parity permutation

P−1f±(A)P = f∓(A) , P =








1

1

1

1








, (detP = −1) . (3.69)

Fixed points of this permutation are given by A ∝ 12. This complexified isomorphism

tells us that a moduli matrix for G′ = SO(4) obeying the strong condition can always

be decomposed to a couple of the moduli matrices for G′ = SU(2) which have been

well-studied. This fact simplifies the analysis of the moduli space in the present case.

For instance, f± are maps from the moduli matrix for k = 1, G′ = SU(2) to those of

k = 1,SO(4) with the parity QZ2 = ±1, since f+(diag(z, 1)) = diag(z, z, 1, 1).

Consider first the QZ2 = +1 patches. There are corresponding patches of the four spe-

cial points ~̃µ = (±1,±1), (±1,∓1). The (1, 1)-patch is explicitly given by the moduli matrix

H
(1,1)
0 =








z2 + b1z + b2

z2 + b1z + b2

−b3z − b4 1

b3z + b4 1








, (3.70)

with (z− z1)(z− z2) = z2 + b1z + b2. The rest of the patches H
(1,−1)
0 ,H

(−1,1)
0 ,H

(−1,−1)
0 can

be obtained by appropriate permutations of H
(1,1)
0 . Note that the special point ~̃µ = (0, 0)

of the moduli space has two different vicinities which we call the (0, 0)+-patch and the

(0, 0)−-patch, that is, the point ~̃µ = (0, 0) is on an intersection of two submanifolds. In

fact, we find that the two different matrices

H
(0,0)+
0 =








z − a1 a4

z − a1 −a4

a3 z − a2

−a3 z − a2








, H
(0,0)−
0 =








z − a′1 a′4
−a′3 z − a′2

z − a′2 a′3
−a′4 z − a′1








,

(3.71)

with

(z − z1)(z − z2) = (z − a1)(z − a2) + a3a4 = (z − a′1)(z − a′2) + a′3a
′
4 , (3.72)

are connected at the points where a3 = a4 = a′3 = a′4 = 0 and a1 = a2 = a′1 = a′2 only. As

mentioned, these concrete expressions for the patches can be obtained by the maps from

those of the G′ = SU(2) case as follows

H
(0,0)+
0 = f+(h(1,1)(ai)) , H

(1,1)
0 = f+(h(2,0)(bi)) , H

(−1,−1)
0 = f+(h(0,2)(ci)) , (3.73)

H
(0,0)−
0 = f−(h(1,1)(a′i)) , H

(1,−1)
0 = f−(h(2,0)(b′i)) , H

(−1,1)
0 = f−(h(0,2)(c′i)) , (3.74)
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where h(∗,∗)(ai) are the moduli matrices for G′ = SU(2), k = 2,

h(1,1)(ai) =

(

z − a1 a4

−a3 z − a2

)

,

h(2,0)(bi) =

(

z2 + b1z + b2 0

b3z + b4 1

)

, h(0,2)(ci) =

(

1 c3z + c4

0 z2 + c1z + c2

)

. (3.75)

The transition functions among these patches are given by the V -transformation (2.26)

with V (z) = f+(V+(z))f−(V−(z)) where V±(z) are those of G′ = SU(2), i.e. they are

exactly the same as in the SU(2) case [10, 11, 15]. Now, connectedness of the patches is

manifest since we know the moduli space for G′ = SU(2) is indeed simply connected. The

three patches in eq. (3.73) compose a submanifold Mk=2
SO(4),++ and eq. (3.74) composes

Mk=2
SO(4),−−. The moduli space with QZ2 = +1, therefore, can be expressed as

Mk=2
SO(4),+ ≃Mk=2

SO(4),++ ∪Mk=2
SO(4),−− , Mk=2

SO(4),++ ≃Mk=2
SO(4),−− ≃Mk=2

SU(2) , (3.76)

whereMk=2
SU(2) is shown in eq. (3.66). As we have shown, these two submanifolds intersect

at the fixed point of the permutation (3.69) in the (0, 0)+-patch and the (0, 0)−-patch

Mk=2
SO(4),++ ∩Mk=2

SO(4),−− = C , (3.77)

where C describes the position of the two coincident local vortices, a1 = a2 = a′1 = a′2.
Note that by comparing the right panel of figure 6 and the left panel of figure 7 (with a

±45 degrees rotation), it is easily seen that the k = 2, U(2) moduli spaces are embedded

in that of the SO(4) theory.

Let us next study the transition functions among the QZ2 = −1 patches, (1, 0)-(0, 1)-

(−1, 0)-(0,−1). The general form of the moduli matrix in the (1, 0)-patch is:

H
(1,0)
0 = f+(h(1,0)(z1, d1))f−(h(1,0)(z2, d2)) =








(z − z1)(z − z2)

−d2(z − z1) z − z1

−d1d2 d1 1 d2

−d1(z − z2) z − z2








, (3.78)

while the other three are

H
(0,1)
0 = f+(h(1,0)(z1, d1))f−(h(0,1)(z2, e2)) ,

H
(0,−1)
0 = f+(h(0,1)(z1, e1))f−(h(1,0)(z2, d2)) ,

H
(−1,0)
0 = f+(h(0,1)(z1, e1))f−(h(0,1)(z2, e2)) , (3.79)

where h(1,0) and h(0,1) are the two patches of Mk=1
SU(2) ≃ C× CP 1,

h(1,0)(z0, b) =

(

z − z0

−b 1

)

, h(0,1)(z0, b
′) =

(

1 −b′

z − z0

)

. (3.80)

Hence, we can conclude that the moduli space of the k = 2 local vortices with QZ2 = −1 is

Mk=2
SO(4),− ≃ (Mk=1

SU(2))
2 ≃

(
C×CP 1

)2
. (3.81)
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k = 1
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k = 2

k = 4

k = 5

Figure 8. The dual weight lattice for k = 1, 2, 3, 4, 5 vortices in G′ = SO(4).

This can be also understood from the dual weight diagrams in figures 2 and 7.

The difference between the moduli spaces in eq. (3.76) and eq. (3.81) can be understood

as follows. Recall that there exist two kinds of minimal vortices in G′ = SO(2M) theory,

namely one for SU(2)+ with QZ2 = +1 and another for SU(2)− with QZ2 = −1, see figure 2.

We can then choose two vortices with either the same or a different Z2-parity in composing

the k = 2 vortex. Two vortices with the same parity can be regarded as physically identical,

while those with different parities are distinct. In the case of two identical vortices, the

moduli space should be a symmetric product, namely given by eq. (3.76). Since the total

parity Qk=2
Z2

= +1 can be made of (Q
(1)
Z2

, Q
(2)
Z2

) = (+1,+1) and (−1,−1), one finds two

copies, as in eq. (3.76). In contrast, there is only one possibility for Qk=2
Z2

= −1, namely

(Q
(1)
Z2

, Q
(2)
Z2

) = (+1,−1). The dual weight diagrams are thus quite useful. As a further

illustration, let us show the diagrams for some higher-winding vortices with G′ = SO(4) in

figure 8, without going into any detail.

k = 2 local vortices for G′ = USp(4)

Consider now the k = 2 local vortices for G′ = USp(4). Since the moduli for a single

(k = 1) local vortex requires four parameters, we expect that the k = 2 configurations need

eight. The moduli matrices including the special points as the origin are of the form

H
(0,0)
0 = (z − z0)14 + A , (3.82)

H
(1,0)
0 =








P (z) 0 0 0

b3b6 − b4(z − z0 + b5) z − z0 + b5 0 b6

b1z + b2 b3 1 b4

−b4b7 + b3(z − z0 − b5) b7 0 z − z0 − b5








, (3.83)
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with P (z) = (z − z0)
2 − δ = (z − z0)

2 − (b2
5 + b6b7) and

H
(1,1)
0 =








P (z) 0 0 0

0 P (z) 0 0

c3z + c4 c5z + c6 1 0

c5z + c6 c7z + c8 0 1








, (3.84)

where P (z) = z2 + c1z + c2. All other patches are connected and can be obtained by

suitable permutations. The moduli matrices H
(1,1)
0 ,H(1,0) depend on eight free parameters,

as expected. The strong condition is already solved by them, and thus these patches are

C
8. The moduli matrix H

(0,0)
0 has however a more complicated form. The strong condition

turns out to be:

ATJ + JA = 0 , A2 = δ14 . (3.85)

The first condition tells that A takes a value in the algebra of USp(4), so

A =








−a12−a34
2 a35 a13 a15

−a45 −a12+a34
2 a15 −a14

a24 a25
a12−a34

2 a45

a25 −a23 −a35
a12+a34

2








. (3.86)

Now A has 10 parameters. The second set of constraints comes from imposing the Plücker

condition on aij = −aji (i, j = 1, 2, 3, 4, 5)

aijakl − aikajl + ailajk = 0 . (3.87)

Note that the number of linearly independent conditions is three, hence seven parameters

out of ten in the matrix A are linearly independent. Those together with z0, yield eight

degrees of freedom, indeed as expected. In this patch, δ depends on aij as follows

δ =
1

4
(a12 − a34)

2 + a13a24 − a35a45 + a15a25 . (3.88)

Thus the patch H(0,0) is expressed as

{H(0,0)
0 } ≃ C× {B|B : 2× 5 matrix}

SL(2, C)
≃ C×

(

C
∗

⋊
{B|B : 2× 5 matrix}

GL(2, C)

)

≃

≃ C×
(

C ⋊
{B|B : 2× 5 matrix of rank 2}

GL(2, C)

)

= C× (C ⋊ Gr5,2) . (3.89)

The last term in the bracket is a cone whose base space is a U(1) fibration of Gr5,2.

The tip of this cone corresponds to the origin of the patch, where aij = 0, which is thus

a conical singularity in the moduli space. Notice that this is a true singularity of the

classical metric on the moduli space. It comes out by applying the strong condition on

a smooth set of coordinates [28]. It is an interesting open problem how this singularity

affects the interactions of vortices. The transition functions between these patches are
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(1, 1)

(1,−1)(−1,−1)

(−1, 1)
(0, 1)

(1, 0)

(0,−1)

(−1, 0) (0, 0)

(1
2
, 1

2
)

(1
2
,−1

2
)(−1

2
,−1

2
)

(−1
2
, 1

2
)

SO(4) SO(5)

Figure 9. Comparison between the single (minimum-winding) vortices in G′ = SO(4) and G′ =

SO(5) theories.

easily obtained, for instance, by requiring that V (z) = H(1,1)(H1,0)−1 be regular with

respect to z

c1 = −2z0, c2 = z2
0 − b2

5 − b6b7, c3 = b1 +
b2
4

b6
, c4 = b2 −

1

b6
(b3b4b6 − b2

4(b5 − z0)),

c5 = −b4

b6
, c6 = b3 −

b4

b6
(b5 − z0), c7 =

1

b6
, c8 =

1

b6
(b5 − z0) . (3.90)

The parameters in H(1,0) are transformed to aij = B1iB2j −B2iB1j of H(0,0) as

B ≃ 1√
b1

(

1 b2
3 − b1b7 0 −b2 − z0b1 + b3b4 + b1b5 −b3

0 −b2 − z0b1 − b3b4 − b1b5 1 −b2
4 − b1b6 b4

)

. (3.91)

3.3 The k = 1 local vortex for G′ = SO(2M + 1)

Let us now consider the vortex solutions of the G′ = SO(2M + 1) theory. The strong

condition for the k = 1 local vortex positioned at the origin in G′ = SO(2M + 1) is given

by eq. (3.1) with n0 = 1. It is very similar to the condition eq. (3.23) for the k = 2

coincident vortices (z1 = z2 = 0) in G′ = SO(2M)

HT
0 JH0 = z2J . (3.92)

This implies that the complexity of a single local SO(2M +1) vortex is almost the same as

in the case of the k = 2 co-axial SO(2M) vortices. Indeed, the corresponding dual weight

diagrams, see figures 1 and 4, for instance, are the same.

If however we restrict ourselves to the case of the minimal vortex, there is a startling

difference between the case of SO(2M) and that of SO(2M + 1). Consider the dual weight

diagrams in these two types of theories. In the case of the SO(2M) theory, all the weight

vectors have the same length |~̃µ|2 = M/4, whereas those for the SO(2M + 1) local vortices

have different lengths |~̃µ|2 from 0 to M , see figure 9 for SO(4) and SO(5). The M − 1

dimensional sphere represents an orbit of G′
C+F = SO(2M) or G′

C+F = SO(2M + 1) which

is nothing but the internal orientation moduli. In the case of G′ = SO(2M), the single

vortex has only one orbit, hence the moduli space consists of the position C and the broken
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color-flavor symmetry SO(2M)/U(M). On the other hand, in the case of G′ = SO(2M +1),

there exist multiple orbits corresponding to the NG modes, and furthermore the quasi-NG

modes connecting them. For concreteness, let us consider the following moduli matrix

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z) = diag

(
z2, . . . , z2

︸ ︷︷ ︸

r

, z, . . . , z
︸ ︷︷ ︸

M−r

, 1, . . . , 1
︸ ︷︷ ︸

r

, z, . . . , z
︸ ︷︷ ︸

M−r

, z
)
, (3.93)

where r takes on integer values from 0 to M . We now act with the color-flavor symmetry

G′
C+F = SO(2M + 1) on the moduli matrix from the right. Hence, the U(r) subgroup in

SO(2M + 1) can be absorbed by the V -transformation (2.26):

U0 =










g−1

1M−r

gT

1M−r

1










∈ U(r) ⊂ SO(2M + 1) , g ∈ U(r) . (3.94)

The other subgroup SO(2(M − r) + 1) ⊂ SO(2M + 1) can be also absorbed by a V -

transformation. Thus the orbit including the special point (3.93) is [21]

Mr
ori =

SO(2M + 1)

U(r)× SO(2(M − r) + 1)
. (3.95)

The orbit continuously connects the special points corresponding to the dual weight

vectors of the same lengths, see figure 9. Although the internal moduli spaces (3.95) with

different r’s are not connected by the action of SO(2M + 1); these are indeed connected

by quasi-NG modes.

The complete moduli space for the k = 1, SO(2M + 1) vortex is very similar to that

of k = 2 co-axial SO(2M) vortices which have been studied in section 3.2.1. A generic

solution to the strong condition (3.92) is given by

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z) =








(z − z0)
21r 0 0 0

B1(z) (z − z0)1M−r+Γ11 0 Γ12

A(z) C1 1r C2

B2(z) Γ21 0 (z − z0)1M−r+1+Γ22








, (3.96)

A(z) ≡ a1;A z + a0;A + λS , (3.97)
(

B1(z)

B2(z)

)

= −
(
(z − z0)12(M−r)+1 + Γ

)
J2(M−r)+1

(

CT
1

CT
2

)

, (3.98)

Γ ≡
(

Γ11 Γ12

Γ21 Γ22

)

, (3.99)

where ai;A (i = 0, 1) are r × r constant anti-symmetric matrices, C1 is an r × (M − r)

constant matrix, C2 is an r × (M − r + 1) constant matrix, and we have defined

λS ≡ −
1

2
(C1, C2)J2(M−r)+1

(

CT
1

CT
2

)

, J2(M−r)+1 ≡






1M−r

1M−r

1




 . (3.100)

– 34 –



J
H
E
P
0
6
(
2
0
0
9
)
0
0
4

The strong condition is now translated into the following form

ΓTJ2(M−r)+1 + J2(M−r)+1Γ = 0 , Γ2 = 0 . (3.101)

All moduli parameters are included in ai;A, Ci,Γ. As in the case of k = 2 co-axial

G′ = SO(2M) vortices (see appendix C.2), a0;A and Ci can be removed by an appropriate

color-flavor rotation and Γ satisfying the strong condition (3.101) can be written as (up to

SO(2M + 1)C+F rotations)

Γ ≃










Λ

0M−r−2γ

02γ

0M−r−2γ

0










, Λ ≡ iσ2 ⊗ diag
(
λ11p1, . . . , λq1pq

)
, (3.102)

with λi > λi+1 > 0 and 2γ (< 2(M − r) + 1) being the rank of Γ (γ =
∑q

i=1 pi). By

making use of the V -transformation and the SO(2M + 1)C+F symmetry, we finally obtain

the following moduli matrix

H0 =




















z21r−2α 0 0 0 0 0 0 0 0

0 z212α 0 0 0 0 0 0 0

0 0 z212γ 0 0 0 0 0 0

0 0 0 z1M−r−2γ 0 0 0 0 0

0 0 0 0 1r−2α 0 0 0 0

0 Λ′ z 0 0 0 12α 0 0 0

0 0 Λ−1z 0 0 0 12γ 0 0

0 0 0 0 0 0 0 z1M−r−2γ 0

0 0 0 0 0 0 0 0 z




















, (3.103)

where we have diagonalized a1;A as

a1;A = uΛ′uT , Λ′ ≡ iσ2 ⊗ diag
(

λ′
11p′1

, . . . , λ′
q′1p′

q′

)

, u ∈ U(2α) , (3.104)

with 2α being the rank of a1;A and 2α = 2
∑q′

i=1 p′i. Let us now rearrange the eigenvalues

{λ−1
i , λ′

i} as

diag(Λ′,Λ−1)→ iσ2 ⊗ diag
(

λ̃11p̃1 , . . . , λ̃s1p̃s

)

, λ̃a > λ̃a+1 > 0 , (3.105)

and redefine t ≡ r − 2α, u ≡M − r − 2γ with the constraint:

s, t, u ∈ Z≥0 , p̃i ∈ Z>0 , t + u + 2

s∑

i=1

p̃i = M , (3.106)

such that the r-dependence in the form of eq. (3.103) disappears. We conclude that the

moduli space of vortices is (apart from the center of mass position):

Mk=1,ori
SO(2M+1) =

⋃

{t,u,p̃i| eq. (3.106)}
R

s
>0 ×Ot,u,p̃i

, (3.107)
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SO(4m+1)
U(2m)

SO(4m+1)
U(2m−2)×SO(5)

SO(4m+1)
U(2m−4)×SO(9)

SO(4m+1)
U(2m−2)×USp(2)

SO(4m+1)
U(2m−4)×USp(2)×SO(5)

SO(4m+1)
U(2)×SO(4m−3)

1

r
2m 2m− 2 2m− 4 2 0

2m− 1 2m− 3 3 1

SO(4m+1)
USp(2)×SO(4m−3)

SO(4m+1)
U(2m−1)×SO(3)

SO(4m+1)
U(2m−3)×SO(7)

SO(4m+1)
U(3)×SO(4m−5)

SO(4m+1)
U(1)×SO(4m−1)

SO(2M + 1) = SO(4m + 1)

SO(4m+3)
U(2m+1)

SO(4m+3)
U(2m−1)×SO(5)

SO(4m+3)
U(2m−1)×USp(2)

SO(4m+3)
U(3)×SO(4m−6)

r
2m + 1 2m− 1 2m− 3 3 1

2m 2m− 2 2 0

SO(4m+3)
U(1)×USp(2)×SO(4m−6)

SO(4m+3)
U(2m)×SO(3)

SO(4m+3)
U(2m−2)×SO(7)

SO(4m+3)
U(2)×SO(4m−1) 1

SO(2M + 1) = SO(4m + 3)

SO(4m+3)
U(1)×SO(4m−2)

SO(4m+1)
U(1)×USp(2)×SO(4m−5)

SO(4m+1)
U(2m−3)×USp(2)×SO(3)

SO(4m+3)
U(2m−2)×USp(2)×SO(3)

SO(4m+3)
USp(2)×SO(4m−1)

Figure 10. Sequences of the k = 1 vortices for SO(4m + 1) and for SO(4m + 3) theories.

Ot,u,p̃i
=

SO(2M + 1)

U(t)× SO(2u + 1)×∏s
a=1 USp(2p̃a)

. (3.108)

Note that there does not appear any Z2 factor contrary to the SO(2M) case since

P = diag(1, . . . , 1,−1) ∈ O(2M + 1)/SO(2M + 1)

acts trivially on H0 in eq. (3.103). The special orbits in eq. (3.95) are obtained simply by

choosing s = 0. A sequence of the moduli space is given in figure 10. At the most generic

points, the moduli spaces are locally of the form

Mk=1,ori
SO(4m+1),+ = R

m
>0 ×

SO(4m + 1)

USp(2)m
, (3.109)

Mk=1,ori
SO(4m+1),− = R

m−1
>0 × SO(4m + 1)

U(1) ×USp(2)m−1 × SO(3)
, (3.110)
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Mk=1,ori
SO(4m+3),+ = R

m
>0 ×

SO(4m + 3)

U(1)×USp(2)m
, (3.111)

Mk=1,ori
SO(4m+3),− = R

m
>0 ×

SO(4m + 3)

USp(2)m × SO(3)
. (3.112)

The dimensions of the moduli spaces are then summarized as

dimC

[

Mk=1,ori
SO(2M+1),+

]

= M2 , (3.113)

dimC

[

Mk=1,ori
SO(2M+1),−

]

= M2 − 1 . (3.114)

3.3.1 Examples: G′ = SO(3),SO(5)

k = 1 local vortex for G′ = SO(3)

Let us discuss the simplest example, viz. G′ = SO(3). In this model there are two patches

having QZ2 = +1. The moduli matrices take the respective forms

H
(1)
0 = f3(h

(1,0)(0, a)) =






z2 0 0

−a2 1
√

2a

−
√

2az 0 z




 , H

(−1)
0 = f3(h

(0,1)(0, b)) . (3.115)

where h(∗,∗)(z0, a) are the two patches (3.80) of Mk=1
SU(2) and the map f3 is defined by

f3 : A =

(

c d

e f

)

∈ GL(2, C)→ f3(A) =






c2 −d2
√

2cd

−e2 f2 −
√

2ef√
2ce −

√
2df cf + de




 , (3.116)

and expresses the isomorphism GL(2, C)/Z2 ≃ [U(1)× SO(3)]C. On the other hand, there

exists just a single patch with QZ2 = −1. This “patch” actually contains only a point

H
(0)
0 = f3(

√
z12) = z13 . (3.117)

This vortex does not break the color-flavor symmetry G′
C+F = SO(3): it is an Abelian

vortex i.e. not having any orientational moduli. Hence, the moduli spaces Mk=1
SO(3),± are

Mk=1
SO(3),+ ≃Mk=1

SU(2) ≃ C× CP 1 , Mk=1
SO(3),− ≃ C . (3.118)

Note that f3 always maps the moduli matrix of G′ = SU(2) to that of G′ = SO(3) with

QZ2 = +1.

We have seen very similar dual weight diagrams for k = 2, SO(2),USp(2) and k = 1,

SO(3) vortices. All of them consist of three sites on a straight line. However, when the

connectedness is taken into account, they are quite different, see figure 11. The three points

are isolated in the SO(2) case while they are all connected in the USp(2) case. In the case of

SO(3), they split into two diagrams. One is a singlet and the other has two sites mutually

connected, which describes CP 1.
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1−1 0 1−1 0 1−1 0

CP 1

≃ (CP 1)2/S2

k = 2, SO(2) k = 2, USp(2) k = 1, SO(3)

Figure 11. k = 1 SO(3) and k = 2 SO(2), USp(2).

k = 1 local vortex for G′ = SO(5)

Finally, we move on to the second simplest case of odd SO vortices: G′ = SO(5). Let us

first list all the patches, starting with those having QZ2 = +1:

H
(0,0)
0 = z15 + A , (3.119)

H
(1,1)
0 =










z2 0 0 0 0

0 z2 0 0 0

−c2
3 −c1z + c2 − c3c4 1 0

√
2c3

c1z − c2 − c3c4 −c2
4 0 1

√
2c4

−
√

2c3z −
√

2c4z 0 0 z










, (3.120)

where

A =










−a1a2 − a3a4 −a2
4 0 a2

1

√
2a1a4

a2
3 −a1a2 + a3a4 −a2

1 0 −
√

2a1a3

0 a2
2 a1a2 + a3a4 −a2

3

√
2a2a3

−a2
2 0 a2

4 a1a2 − a3a4

√
2a2a4

−
√

2a2a3 −
√

2a2a4 −
√

2a1a4

√
2a1a3 0










. (3.121)

The patches H
(1,−1)
0 , H

(−1,1)
0 and H

(−1,−1)
0 can be obtained from H

(1,1)
0 by the permuta-

tions (3.10). This means that the four patches {H(1,1)
0 ,H

(1,−1)
0 ,H

(−1,1)
0 ,H

(−1,−1)
0 } are on

an SO(5) orbit and they are certainly connected. By the general discussion in the previous

section, we know that also H(0,0) and all the other four patches are connected. This can

be seen explicitly by studying the transition functions among all these patches:

H
(1,1)
0 = V (1,1),(0,0)H

(0,0)
0 , (3.122)

V (1,1),(0,0) =











z + c2+c3c4
c1

c24
c1

0 − 1
c1
−

√
2c4
c1

− c23
c1

z + c2−c3c4
c1

1
c1

0
√

2c3
c1

0 −c1 0 0 0

c1 0 0 0 0

−
√

2c3 −
√

2c4 0 0 1











,

{

a1 = ± 1√
c1

ai = ± ci√
c1

(i = 2, 3, 4) ,

(3.123)
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where the same sign has to be chosen for all the transition functions. This means that the

moduli space for the minimal vortex with QZ2 = +1 in G′ = SO(5) is

Mk=1
SO(5),+ = C×WCP 4

(2,1,1,1,1) ≃ C× CP 4/Z2 , (3.124)

where the subscript (2, 1, 1, 1, 1) denotes the U(1)C charges. The weighted complex projec-

tive space WCP 4
(2,1,1,1,1) is defined by the following equivalence relation among five complex

parameters φi (i.e. the homogeneous coordinates)

(φ1, φ2, φ3, φ4, φ5) ∼ (λ2φ1, λφ2, λφ3, λφ4, λφ5) , λ ∈ C
∗ . (3.125)

On the other hand, the patches corresponding to QZ2 = −1 take the form

H
(1,0)
0 =










z2 0 0 0 0

−b1z z 0 0 0

−b1b2 − b2
3 b2 1 b1

√
2b3

−b2z 0 0 z 0

−
√

2b3z 0 0 0 z










. (3.126)

The remaining patches H
(−1,0)
0 , H

(0,1)
0 and H

(0,−1)
0 are obtained by permutations (3.10)

from H
(1,0)
0 . Since all of them are on an SO(5) orbit, the moduli space of the k = 1 vortices

with QZ2 = −1 is

Mk=1
SO(5),− = C× SO(5)

U(1) × SO(3)
≃Mk=1

USp(4) = C× USp(4)

U(2)
. (3.127)

The following V -transformation from the (1, 0)-patch to the (−1, 0)-patch is

H(−1,0)(z) = V (−1,0),(1,0)(z)H(1,0)(z) , (3.128)

V (−1,0),(1,0) =











0 0 −1
2Ξ 0 0

0 c′2

Ξ a′z −2a′2

Ξ −2a′c′

Ξ

− 2
Ξ −2b′z

Ξ z2 −2a′z
Ξ −2c′z

Ξ

0 −2b′2

Ξ b′z c′2

Ξ −2b′c′

Ξ

0 −2b′c′

Ξ c′z −2a′c′

Ξ 1− 2c′2

Ξ











, (3.129)

Ξ ≡ 2a′b′ + c′2 . (3.130)

The transition functions are as follows

a = −2a′

Ξ
, b = −2b′

Ξ
, c =

2c′

Ξ
. (3.131)

4 Semi-local vortices

We now turn to the more general type of solutions, by relaxing the strong condition (2.64).

Namely, we shall make use of only the weak condition (2.22) to define our vortices. As will

be seen shortly, this leads to a larger class of solutions: the so-called semi-local vortices.

All our vortices including the semi-local ones being BPS saturated, can be analyzed

by using the moduli matrix H0(z). The latter has the general properties:
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• it is an NC ×NF complex matrix;

• all of its elements are polynomials in z. The algorithm given in ref. [24] implies that

it is sufficient to consider only polynomials as holomorphic functions;

• it is defined only up to the V -equivalence relation, eq. (2.26);

• it is subject to the weak condition, eq. (2.22).

The moduli parameters φi for a BPS vortex solution emerge as coefficients in H0(z) and

thus the moduli space of the solutions is defined by the above properties only. Of course,

all the matrices which we found in section 3 for the local vortices satisfy these conditions

a fortiori. Specifically, one can easily check that the special point H
(µ̃1,...,µ̃M )
0 in eq. (2.36)

satisfies the weak condition.

In the strong coupling limit e, g → ∞, the master equations (2.24) and (2.25) are

exactly solved by Ω′ = Ω′
∞, ω = ω∞ in eq. (2.28) and the energy density and Kähler

potential for the effective action for the vortices (lumps) are given by [22]

E = 2∂∂̄K , K(φi, φi∗) =

∫

d2x K , K = ξ log Tr

[√

IG′I†G′

]

, (4.1)

with the G′-invariant IG′ = HT
0 (z)JH0(z). Even in the case of finite gauge couplings,

these are considered to be good approximations when me,gL ≫ 1 where L is the typical

distance from the core of the vortices. By substituting a typical form of H0(z) into the

above formula, one can obtain multiple peaks in the energy profile even for a minimal

winding vortex (k = 1). We call these interesting multi-peak solutions fractional vortices.

These will be discussed in a separate paper [53]. Before explicitly studying the semi-local

vortices, let us first solve some technical problems left out from the previous section.

4.1 Dimension of the moduli space

The index theorem discussed in appendix A tells us that our moduli space has dimension:

dimC

(
MG′,k

)
=

kN2

n0
= ν N2 . (4.2)

This dimension should coincide with that of the space spanned by the moduli in H0(z), if

the master equations have a unique solution for a given H0(z). It is easy to confirm this

by considering the vicinity of a special point of the moduli space.

Let us find the general form of H0 in the vicinity of the special point (2.36) by per-

turbing H0. For definiteness, let us consider the perturbation around H
(k
2
,..., k

2
)

0 :

H
(k
2
,..., k

2
)

0 + δH0 =

(

zk1M

1M

)

+

(

δA(z) δC(z)

δB(z) δD(z)

)

, (4.3)

where δA(z), δB(z), δC(z) and δD(z) are M ×M matrices whose elements are holomor-

phic functions of z with small (infinitesimal) coefficients.16 Not all of the fluctuations are

16Notice that here we are considering fluctuations around a k-vortex configuration with even parity. The

generalization to the odd case is discussed at the end of the section.
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independent though: we must fix them uniquely by using the V -equivalence (2.26). The

infinitesimal V -transformation satisfies the condition δV T(z)J + JδV (z) = 0 which just

represents the algebra of SO(2M, C),USp(2M, C) and can be expressed as

δV (z) =

(

δL(z) δNA,S(z)

δMA,S(z) −δLT(z)

)

. (4.4)

Again δL(z), δMA,S (z) and δNA,S(z) are M ×M matrices whose elements are holomor-

phic in z and their coefficients are infinitesimally small. Acting with this infinitesimal

V -transformation on the moduli matrix

δV (z)H
(k
2
,..., k

2
)

0 + δH0 ≃
(

zkδL(z) δNA,S(z)

zkδMA,S(z) −δLT(z)

)

+

(

δA(z) δC(z)

δB(z) δD(z)

)

, (4.5)

we can set δD(z)→ 0, δC → δCS,A(z) and δB(z)→ δBS,A(z) + δb(z) yielding:

δH0 =

(

δA(z) δCS,A(z)

δBS,A(z) + δb(z) 0

)

. (4.6)

Note that we have adopted the notation that δX(z) stands for a general polynomial function

while δx(z) denotes a holomorphic function whose degree is less than the vortex number

k. Now the V -transformation is completely fixed, and one can determine the true degrees

of freedom of the fluctuations. The infinitesimal form of the weak condition (2.22) is

δHT
0 (z)JH0(z) + H0(z)JδH0(z) = O(zk−1) .

This leads to δA→ δa(z), δCS,A(z)→ δcS,A(z), δBS,A(z)→ 0 and δb(z) → δbA,S(z):

δH0(z) =

(

δa(z) δcS,A(z)

δbA,S(z) 0

)

. (4.7)

These are good coordinates in the vicinity of the special point

H
(k
2
,..., k

2
)

0 = diag
(

zk, . . . , zk, 1, . . . , 1
)

.

Of course, this is only a local description but it is sufficient for counting the dimensions

of the moduli space. The complex dimension is the number of the complex parameters in

the fluctuations

dimCMk-semi-local
SO(2M),USp(2M) = 2kM2 . (4.8)

In order to restrict the solutions to the local vortices, one further imposes the following

conditions:

δa(z)→ δP (z)1M , δcS,A(z)→ 0 , (4.9)
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with an arbitrary polynomial δP (z) of order (k − 1). This leads to the dimension of the

k local vortex moduli:

dimCMk-local
SO(2M),+ = k

(

1 +
M(M − 1)

2

)

, (4.10)

dimCMk-local
USp(2M) = k

(

1 +
M(M + 1)

2

)

. (4.11)

In a similar way, one can count the dimension in the vicinity of the special point of positive

chirality (k, . . . , k)17 for the SO(2M + 1) case and obtain

dimCMk-semi-local
SO(2M+1),+ = k (2M + 1)2 , dimCMk-local

SO(2M+1),+ = k
(
M2 + 1

)
. (4.12)

Notice that these results can be considered as a non-trivial consistency check for the

moduli matrix formalism. In fact, by physical arguments, we always expect the following

relation among the dimensions of the moduli spaces:

dimCMk = k dimCMk=1, (4.13)

which is valid both for the local and semi-local case. This relations can be readily used to

generalize the above equations to the other cases, including special points with odd chirality.

4.2 The k = 1 semi-local vortex in G′ = SO(2M),USp(2M) theories

Let us study the minimal-winding semi-local vortex in this section. The k = 1 vortex is

special in the sense that all the fluctuations in eq. (4.7) can actually be promoted to finite

parameters. Namely, the H
( 1
2
,..., 1

2
)

0 -patch is obtained by just replacing the small fluctuation

δa(z), δbA,S (z), δcS,A(z) by finite constant parameters A,BA,S , CS,A, respectively:

H
( 1
2
,..., 1

2
)

0 (z) =

(

z1M + A CS,A

BA,S 1M

)

. (4.14)

One can verify that this indeed satisfies the weak condition (2.22) for k = 1. Notice that

the above matrix can also be rewritten as

H
( 1
2
,..., 1

2
)

0 (z) = ŨC

(

z1M + Ã

1M

)

UB , (4.15)

where we have defined

Ã ≡ A− CS,ABA,S , UB ≡
(

1M

BA,S 1M

)

, ŨC ≡
(

1M CS,A

1M

)

. (4.16)

17Around other special points this strategy may not work in the local case. Other special points may sit

on an intersection of two different submanifolds and one cannot make a distinction between the fluctuations

among them. It is possible, in any case, to identify, case by case, a special point which does not lie on an

intersection. However, one might sometimes need to include quadratic fluctuations, in order to implement

correctly the strong condition.
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When A is proportional to the unit matrix and CS,A is zero, that is, corresponding to

a local vortex (3.8), UB corresponds to the Nambu-Goldstone modes associated with the

symmetry breaking G′
C+F → U(M). It is remarkable that this is not always the case for

general semi-local configurations since a non-vanishing Ã and CS,A break U(M) further

down. In general, the symmetry breaking is G′
C+F → Zn0 .

Let us next consider the transition functions between two different patches. As we did

for the local vortices in section 3, the other patches can be obtained as in eq. (3.9), i.e. via

the permutation matrix Pr defined in eq. (3.10). Transition functions are always obtained

by means of the V -transformations as in eq. (2.26)

H ′
0(z) = V (z)H0(z) , V (z) ≡ Ve V ′(z) , Ve ∈ C

∗ , V ′(z) ∈ G′C . (4.17)

For example, consider two patches, H
( 1
2
,..., 1

2
)

0 (z) given by eq. (4.15) and

H
(
0

r
︷ ︸︸ ︷

− 1
2
,...,− 1

2
,

M−r
︷ ︸︸ ︷
1
2
,..., 1

2
)(z) = P−1

r H
( 1
2
,..., 1

2
)

0
′(z)Pr , (4.18)

H
( 1
2
,..., 1

2
)

0
′(z) = ŨC′

(

z1M + Ã′

1M

)

UB′ . (4.19)

The equation (4.17) in this case reads

(

z1M + Ã′

1M

)

UB′PrU−B = Ũ−C′PrV ŨC

(

z1M + Ã

1M

)

. (4.20)

The transition functions will be determined by this condition together with

(UB′PrU−B)TJ(UB′PrU−B) = J , and (PrV )TJ(PrV ) = J .

The solution to these conditions are of the form

UB′PrU−B =

(

a a dA,S

0
(
a−1
)T

)

, Ũ−C′PrV ŨC =

(

a (z1M + Ã′) a dA,S

0
(
a−1
)T

)

, (4.21)

with a ∈ GL(M, C) and dA,S is an M ×M (anti)symmetric matrix and

Ã′ = a Ã a−1 , (4.22)

C ′
S,A = a

[

CS,A −
1

2

(

Ã dA,S − dA,S ÃT
)]

aT . (4.23)

Notice that TrÃ is invariant. The final step is to determine a, dA,S and the transition

function for B′
A,S by investigating the concrete form of UB

UB =








1r

1M−r

b1 b2 1r

−ǫ bT
2 b3 1M−r








, bT
1,3 = −ǫ b1,3 , (4.24)
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and analogously for UB′ . Plugging this into the left hand side of the first equation in (4.21),

one obtains the following result:

a =

(

−ǫ b1 −ǫ b2

0 1M−r

)

, dA,S =

(

−b−1
1

0M−r

)

. (4.25)

The transition functions between BA,S and B′
A,S are indeed the same as those of the local

vortex in eq. (3.13)

b′1 = ǫ b−1
1 , b′2 = b−1

1 b2 , b′3 = b3 + ǫ bT
2 b−1

1 b2 . (4.26)

We again observe an important result from the first equation in (4.21). It tells us that

detPr = +1 , (4.27)

thus there exist two copies of the moduli space, which are disconnected even in the larger

space including the semi-local vortices, in the case of G′ = SO(2M). It is of course due to

the Z2 parity (see section 2.3). As in the case of the local vortices in G′ = SO(2M) theory

discussed earlier, the patches with different Z2-parity are disconnected.

4.2.1 Example: G′ = SO(4)

Let us give an example in the G′ = SO(4) theory. The patches with Z2-parity +1 are

H
( 1
2
, 1
2
)

0 =








z + a b e f

c z + d f g

0 i 1 0

−i 0 0 1








, (4.28)

H
(− 1

2
,− 1

2
)

0 =








1 0 0 i′

0 1 −i′ 0

e′ f ′ z + a′ b′

f ′ g′ c′ z + d′








. (4.29)

These patches are connected by the V -transformation (2.26) H
(− 1

2
,− 1

2
)

0 =

V (− 1
2
,− 1

2
),( 1

2
, 1
2
)H

( 1
2
, 1
2
)

0 ,

V (− 1
2
,− 1

2
),( 1

2
, 1
2
) =








0 0 0 i′

0 0 −i′ 0

0 1
i′ z + a′+d′

2 0

− 1
i′ 0 0 z + a′+d′

2








, (4.30)

The explicit form of the transition function (the relation between the primed and unprimed

parameters) is given in eq. (D.1).

There are two more patches for the vortex with Z2-parity −1 and are described by the

moduli matrices

H
( 1
2
,− 1

2
)

0 =








z + a′′ f ′′ e′′ b′′

−i′′ 1 0 0

0 0 1 i′′

c′′ g′′ f ′′ z + d′′








(4.31)
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H
(− 1

2
, 1
2
)

0 =








1 i′′′ 0 0

f ′′′ z + d′′′ b′′′ e′′′

g′′′ c′′′ z + a′′′ f ′′′

0 0 −i′′′ 1








. (4.32)

These two patches are connected in the same way as the two with positive chirality. In fact

they define another copy of the same space. In agreement with the general results found

above, neither one of the even patches: H
(− 1

2
,− 1

2
)

0 , H
( 1
2
, 1
2
)

0 , is connected with one of the odd,

H
( 1
2
,− 1

2
)

0 and H
−( 1

2
, 1
2
)

0 . One can easily see that there does not exist any V -transformation

connecting them. One may construct a holomorphic matrix X(z) which satisfies, for

example, H
( 1
2
,− 1

2
)

0 = X(z)H
( 1
2
, 1
2
)

0 , however, violating the condition X(z) ∈ SO(4, C).

4.3 The k = 2 semi-local vortices

Consider now the patches associated with the k = 2 (doubly-wound) vortices. Let us begin

with infinitesimal fluctuations around the special point

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 ) =








z21r

z1M−r

1r

z1M−r







→ H

(1,...,1,0,...,0)
0 + δH0(z) . (4.33)

In order to get rid of the unphysical degrees of freedom in the fluctuations δH0, let us

consider an infinitesimal V -transformation (2.26)

δV =








δK11 δM11 δK12;A,S δM12

δL11 δN11 −ǫ δMT
12 δN12;A,S

δK21;A,S δM21 −δKT
11 −δLT

11

−ǫ δMT
21 δN21;A,S −δMT

11 −δNT
11








. (4.34)

Acting with the V -transformation on the perturbed moduli matrix, we find

δH0 ∼ δH0 + δV H
(1,...,1,0,...,0)
0 . (4.35)

Since the explicit form of δV H
(1,...,1,0,...,0)
0 is

δV H
(1,...,1,0,...,0)
0 =








z2δK11 zδM11 δK12;A,S zδM12

z2δL11 zδN11 −ǫ δMT
12 zδN12;A,S

z2δK21;A,S zδM21 −δKT
11 −zδLT

11

−z2ǫ δMT
21 zδN21;A,S −δMT

11 −zδNT
11








,

the physical degrees of freedom in the fluctuations can be expressed as

δH0 =








δA11 δC11 δA12;S,A δC12

δB11 δD11 0 δD12;S,A+δd12;A,S

δA21;S,A+δa
(1)
21;A,Sz+δa

(0)
21;A,S δc21 0 δc22

δB21 δD21;S,A+δd21;A,S 0 δd22








,
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where δX denotes a generic holomorphic polynomial and δx stands for a constant matrix.

The infinitesimal version of the weak condition (2.22)

δHT
0 (z)JH0(z) + H0(z)JδH0(z) = O(z) , (4.36)

turns out to be equivalent to the following conditions

{δD11, δD21;S,A, δD12;S,A} = O(1) ,

{δA11, δC11, δA12;S,A, δC12} = O(z) ,

δA21;S,A = 0 , δB11 = −δcT
22z + δb11 , δB21 = −ǫ δcT

21z + δb21 . (4.37)

We thus find the generic form of the fluctuations in the vicinity of the special point

H
(1,...,1,0··· ,0)
0 as

δH0 =








δa
(1)
11 z + δa

(0)
11 δc

(1)
11 z + δc

(0)
11 δa

(1)
12;S,Az + δa

(0)
12;S,A δc

(1)
12 z + δc

(0)
12

−δcT
22z + δb11 δd11 0 δd12

δa
(1)
21;A,Sz + δa

(0)
21;A,S δc21 0 δc22

−ǫ δcT
21z + δb21 δd21 0 δd22








. (4.38)

Let us count the dimensions of the moduli space. We have six matrices δa
(α)
ij of size r× r,

two matrices δbij of size (M−r)×r, six matrices δc
(α)
ij of size r×(M−r) and four matrices

δdij of the size (M − r)× (M − r). Thus summing up we obtain the correct dimension

dimC

[

M2-semi-local
SO(2M),USp(2M)

]

= 4M2 . (4.39)

The next task is to find the coordinate patches with finite parameters (i.e. large fluc-

tuations). To this end, let us naively promote all the small fluctuations in eq. (4.38) to

finite parameters as δx→ x (as was done in the case of the minimal semi-local vortices):

H0 =








z21r + a
(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;S,Az + a

(0)
12;S,A c

(1)
12 z + c

(0)
12

−cT
22z + b11 z1M−r + d11 0 d12

a
(1)
21;A,Sz + a

(0)
21;A,S c21 1r c22

−ǫ cT
21z + b21 d21 0 z1M−r + d22








. (4.40)

But such a procedure is inconsistent with the weak condition (2.22). Although

HT
0 JH0

∣
∣
O(zn)

= 0 for n ≥ 3, the terms of order O(z2) turn out to be (z2 times)

HT
0 JH0

∣
∣
O(z2)

=









−2ΛS,A −a
(1)
21;A,Sc

(1)
11 1r − a

(1)
21;A,Sa

(1)
12;S,A −a

(1)
21;A,Sc

(1)
12

c
(1)T
11 a

(1)
21;A,S 0 0 1M−r

ǫ (1r + a
(1)
12;S,Aa

(1)
21;A,S) 0 0 0

c
(1)T
12 a

(1)
21;A,S ǫ1M−r 0 0









,

(4.41)

with

− 2ΛS,A ≡ a
(1)T
11 a

(1)
21;A,S − a

(1)
21;A,Sa

(1)
11 + c21c

T
22 + ǫ c22c

T
21 . (4.42)
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This must be HT
0 JH0

∣
∣
O(z2)

= J , i.e. we have to eliminate the undesired terms, such that

eq. (4.41) becomes exactly equal to J . To compensate the surplus terms, we add the

following extra term

Hextra
0 =








0r

0M−r

ΛS,A a
(1)
21;A,Sc

(1)
11 a

(1)
21;A,Sa

(1)
12;S,A a

(1)
21;A,Sc

(1)
12

0M−r








. (4.43)

Finally we obtain the finite coordinate patch

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z) =








z21r + a
(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;S,Az + a

(0)
12;S,A c

(1)
12 z + c

(0)
12

−cT
22z + b11 z1M−r + d11 0 d12

a
(1)
21;A,Sz + a

(0)
21;A,S + ΛS,A c21 + a

(1)
21;A,Sc

(1)
11 1r + a

(1)
21;A,Sa

(1)
12;S,A c22 + a

(1)
21;A,Sc

(1)
12

−ǫ cT
21z + b21 d21 0 z1M−r + d22








.

(4.44)

All other patches can be obtained by making use of the permutation (3.10):

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z)→ P−1

r′ H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )′(z)Pr′ . (4.45)

Since the transition functions between the different patches of the k = 2 semi-local vortices

are rather complicated, we shall not discuss them in this paper; we limit ourselves to

showing just a few simple examples below.

4.3.1 G′ = SO(4)

As in the case of the k = 2 local vortices discussed in section 3.2.2, at least nine patches are

needed to describe the k = 2 semi-local vortices. They are divided into two disconnected

parts as 9 = 5+4 according to the Z2-parity. The five matrices corresponding to QZ2 = +1

are {H(1,1)
0 , H

(1,−1)
0 , H

(−1,1)
0 , H

(−1,−1)
0 , H

(0,0)
0 } and the four matrices with QZ2 = −1 are

{H(1,0)
0 , H

(−1,0)
0 , H

(0,1)
0 , H

(0,−1)
0 }.

Let us start with the patches having QZ2 = +1,

H
(0,0)
0 = (z − z0)14 + D , (4.46)

H
(1,1)
0 =

(

z212

12

)

+

(

A1z + A0 C1Sz + C0S

H1Az + H0A + 1
2

(
H1AA1 −AT

1 H1A

)
H1AC1S

)

, (4.47)

where D is an arbitrary 4× 4 matrix. The other patches {H(1,−1)
0 , H

(−1,1)
0 , H

(−1,−1)
0 } can

be obtained by the permutations (3.10) of H
(1,1)
0 .

Now we can clearly see the difference between the local and semi-local vortices. Let us

consider the (0, 0)-patch. The patches for the local vortices are given in eq. (3.71) and those
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for the semi-local vortices in eq. (4.46). To avoid confusion, let us denote them by (0, 0)l+
and (0, 0)l− for the former and (0, 0)sl for the latter. Clearly, the (0, 0)l+ and (0, 0)l− patches

are unified into the (0, 0)sl-patch when the strong condition is relaxed to the weak one.

As explained in section 3.2.2, the (0, 0)l+ patch (with the (1, 1) and (−1,−1) patches)

and the (0, 0)l−-patch (with the (−1, 1) and (1,−1) patches) correspond to two possible

choices of the Z2-parities of the component vortices (Q
(1)
Z2

, Q
(2)
Z2

) = (±1,±1). This reflects

the fact that any product of the moduli matrices for local vortices generates automatically

local vortices. It is tempting to interpret the fact that the two spaces are disconnected

as meaning that the Z2-parity of each component vortex is conserved. However, this is

not the case for the semi-local vortices. Products of moduli matrices satisfying the weak

condition (2.22) do not, in general, satisfy it. The Z2-parity of each vortex is therefore not

conserved in the semi-local case.

Let us examine the transition functions between the (1, 1) and (0, 0)-patches, explicitly.

Notice, that we have already observed the connectedness between them, as it was indeed

present in the case of the local vortices. Our aim to express the following complicated

results is completeness of the calculations. Let us write down the moduli matrices as

H
(1,1)
0 =








z2 + a′1z + a′0 b′1z + b′0 e′1z + e′0 f ′
1z + f ′

0

c′1z + c′0 z2 + d′1z + d′0 f ′
1z + f ′

0 g′1z + g′0
c′1i

′
1 i′1z + i′0 − 1

2a′1i
′
1 + 1

2d′1i
′
1 1 + f ′

1i
′
1 g′1i

′
1

−i′1z − i′0 − 1
2a′1i

′
1 + 1

2d′1i
′
1 −b′1i

′
1 −e′1i

′
1 1− f ′

1i
′
1








,

(4.48)

H
(0,0)
0 =








z + a0 b0 c0 d0

e0 z + f0 g0 h0

i0 j0 z + k0 l0
m0 n0 o0 z + p0








. (4.49)

The transition functions are determined through a V -transformation (2.26) satisfying the

relation V (1,1),(0,0)H
(0,0)
0 = H

(1,1)
0 :

V (1,1),(0,0) =









z + 1
2a′1 + 1

2d′1 −
i′0
i′1

0 0 1
i′1

0 z + 1
2a′1 + 1

2d′1 −
i′0
i′1
− 1

i′1
0

0 i′1 0 0

−i′1 0 0 0









. (4.50)

The transition functions connecting the patches H
(0,0)
0 and H

(1,1)
0 are thus given explicitly,

see eq. (D.2).

The transition functions between the (1,−1) and (0, 0)-patches can be obtained by the

permutation of the above (1, 1)-(0, 0) system as

P−1H
(1,1)
0 P = H

(1,−1)
0 , P−1H

(0,0)
0 P = H̃

(0,0)
0 , P =








1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0








. (4.51)
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Therefore, the transition functions are easily found as

V (1,−1),(0,0)H̃
(0,0)
0 = H

(1,−1)
0 , V (1,−1),(0,0) ≡ P−1V (1,1),(0,0)P . (4.52)

The transition functions between the (1, 1) and (1,−1)-patches can be obtained by com-

bining two transition functions given above.

Let us next show the transition functions between the patches with Z2-parity −1. The

explicit form of the moduli matrix is given by

H
(1,0)
0 =








z2

z

1

z








+








a1z + a0 b1z + b0 c1z + c0 d1z + d0

−e1z + e0 f0 0 g0

−e1i1 i1 0 e1

−i1z + i0 j1 0 k0








. (4.53)

The (−1, 0)-patch can be obtained by acting with the permutation matrix on the (1, 1)-

patch as follows

H
(−1,0)
0 = P−1H

(1,0)
0

′P , P =








0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1








. (4.54)

The transition functions between these two patches are obtained by

V (−1,0),(1,0)H
(1,0)
0 = H

(−1,0)
0 , (4.55)

V (−1,0),(1,0) =










0 0 −i′1e
′
1 0

0 0 −e′1z + e′0 − e′1
i′1

− 1
e′1i′1

1
e′1

(

z − e′0
e′1

) (

z − e′0
e′1

)(

z − i′0
i′1

)
1
i′1

(

z − i′0
i′1

)

0 − i′1
e′1

−i′1z + i′0 0










. (4.56)

The other transition functions between all the other patches are obtained through suitable

permutations.

It can be shown that the patches with QZ2 = +1 and those with QZ2 = −1 are indeed

disconnected. Let us take the example of the two moduli matrices H
(0,0)
0 and H

(1,0)
0 .

Assume that there exists a V -function such that

V H
(0,0)
0 = H

(1,0)
0 . (4.57)

First we observe that V is a matrix whose elements are all at most of order z. This is due

to H
(0,0)
0 having the term, z14 and the highest power of V H

(0,0)
0 should not exceed 2 which

is the highest degree of H
(1,0)
0 . We can thus determine the linear term in z of V

V =








1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0








z +








v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44








. (4.58)
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Furthermore, let us focus on the linear terms of z in eq. (4.57), i.e.,








1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0








D +








v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44








=








a1 b1 c1 d1

−e1 1 0 0

0 0 0 0

−i1 0 0 1








. (4.59)

By comparison of the third row of both sides, we conclude that (v31, v32, v33, v34) =

(0, 0, 0, 0). However, detV = 0 does not satisfy the requirement V ∈ SO(4, C): hence

these two patches are disconnected.

4.4 The k = 1 semi-local vortex for G′ = SO(2M + 1)

The result of the index theorem (see appendix A) yields that the real dimension is 2k(2M +

1)2 for the moduli space in SO(2M +1). Following the technology explained in section 4.3,

it is straightforward to extend the results to the case of G′ = SO(2M + 1). The moduli

matrix for k = 1 in the (

r
︷ ︸︸ ︷

1, . . . , 1,

M−r
︷ ︸︸ ︷

0, . . . , 0)-patch is the most general semi-local moduli

matrix and is given by

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 )(z) =











z21r + a
(1)
11 z + a

(0)
11 c

(1)
11 z + c

(0)
11 a

(1)
12;Sz + a

(0)
12;S c

(1)
12 z + c

(0)
12 e

(1)
15 z + e

(0)
15

−cT
22z + b11 z1M−r + d11 0 d12 e25

a
(1)
21;Az + a

(0)
21;A + ΛS c21 + a

(1)
21;Ac

(1)
11 1r + a

(1)
21;Aa

(1)
12;S c22 + a

(1)
21;Ac

(1)
12 e35 + a

(1)
21;Ae

(1)
15

−cT
21z + b21 d21 0 z1M−r + d22 e45

−eT
35z + eT

31 eT
32 0 eT

34 z + e55











,

(4.60)

where we have defined

− 2ΛS ≡ a
(1)T
11 a

(1)
21;A − a

(1)
21;Aa

(1)
11 + c21c

T
22 + c22c

T
21 + e35e

T
35 . (4.61)

4.4.1 G′ = SO(3)

For G′ = SO(3), k = 1 there are 3 patches, viz. (1), (−1), (0). The moduli matrix for the

(0)-patch is simply

H
(0)
0 = z13 + A , (4.62)

where it is noteworthy to remark that the color+flavor symmetry is unbroken.

The moduli matrix for the (1)-patch is

H
(1)
0 =






z2 + z1z + z2 a + fz c + bz

−d2

2 1 −d

e + dz 0 z − z3




 , (4.63)
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while the moduli matrix for the (−1)-patch is simply obtained by the permutation

H
(−1)
0 = PH

(1)
0 P−1 , with P =






0 1 0

1 0 0

0 0 1




 . (4.64)

The patches (−1) and (1) are connected by a V -transformation given by

H ′(1)
0 = V (1),(−1)H

(−1)
0 with V (1),(−1) =






(e′+d′z′)2

d′2
− 2

d′2
−2(e′+d′z′)

d′2

−d′2

2 0 0

e′ + d′z′ 0 −1




 , (4.65)

and the transition functions can be found in the appendix. The mass center of the

system can be identified by taking the coefficient of the z2 term of detH0. It is given

by: C.M. = −z′1 + z′3 + b′d′ + d′2f ′/2 = −z1 + z3 + bd + d2f/2, which has a form that is

invariant under the change of patch.

The patches (1) and (0) are disconnected. This can be seen from identifying the linear

order of V

H
(1)
0 = V H ′

0
(0)

= V
(
z13 + A′) ⇒ V = z diag(1, 0, 0) + Vconst . (4.66)

Looking now at the linear order in z of the equation






z1 f b

0 0 0

d 0 1




 =






1 0 0

0 0 0

0 0 0




A′ +






v1 v2 v3

v4 v5 v6

v7 v8 v9




 , (4.67)

which reveals that the second row of V has to be zero, which takes V out of SO(3, C) and

the patches are thus disconnected.

4.4.2 G′ = SO(5)

For SO(5) we have nine patches. The five having Z2 charge +1 are all connected and are

described by the following moduli matrices

H(0,0)(z) = z15 +










a′1 a′2 a′3 a′4 a′5
b′1 b′2 b′3 b′4 b′5
c′1 c′2 c′3 c′4 c′5
d′1 d′2 d′3 d′4 d′5
e′1 e′2 e′3 e′4 e′5










, (4.68)

H(1,1)(z) =











z2+a1z+b1 a2z+b2 c1z+d1 c2z+d2 g1z+h1

a3z+b3 z2+a4z+b4 c2z+d2 c3z+d3 g2z+h1

ea3− i21
2 ez+f− e(a1−a4)

2 − i1i2
2 1+ec2 ec3 i1+eg2

−ez−f− e(a1−a4)
2 − i1i2

2 −ea2− i22
2 −ec1 1−ec2 i2−eg1

−i1z+j1 −i2z+j2 0 0 z+y











,

(4.69)
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with the rest being permutations of the latter. The moduli matrix (0, 0)-patch is connected

to the (1, 1)-patch by the following V -transformation

H(1,1)(z) = V (1,1),(0,0)(z)H(0,0)(z) , (4.70)

V (1,1),(0,0) =











z + a1+a4
2 − f

e − i1i2
2e − i22

2e 0 1
e

i2
e

i21
2e z + a1+a4

2 − f
e + i1i2

2e −1
e 0 − i1

e

0 e 0 0 0

−e 0 0 0 0

−i1 −i2 0 0 1











, (4.71)

where the transition functions can be found in appendix D. There are four patches having

Z2-charge −1, which are all connected. They are described by (and permutations of) the

following moduli matrix

H(1,0)(z) =










z2 + a1z + a2 c1z + c0 b1z + b0 d1z + d0 i1z + i0
f0 − e1z z + g0 0 g1 j0

−e0e1 − j2
1
2 e0 1 e1 j1

f1 − e0z g2 0 z + g3 j2

h0 − j1z h1 0 h2 z + k










. (4.72)

This patch is connected to H(−1,0) by the following V -transformation

H(−1,0)(z) = V (−1,0),(1,0)(z)H(1,0)(z) , (4.73)

V (−1,0),(1,0) =











0 0 −1
2Ξ 0 0

0 j′21
Ξ f ′

0 − e′1z −2e′21
Ξ

2e′1j′1
Ξ

− 2
Ξ

L1(z)
Ξ2

L2(z)
Ξ

L3(z)
Ξ2

L4(z)
Ξ2

0 −2e′20
Ξ f ′

1 − e′0z
j′21
Ξ

2e′0j′1
Ξ

0
2e′0j′1

Ξ −h′
0 + j′1z

2e′1j′1
Ξ 1− 2j′21

Ξ











, (4.74)

Ξ ≡ 2e′0e
′
1 + j′21 , (4.75)

1

2
L1(z) ≡ f ′

1j
′2
1 − 2e′20

(
f ′
0 − e′1z

)
+ e′0j

′
1

(
j′1z − 2h′

0

)
, (4.76)

L2(z) ≡ h′2
0 − 2h′

0j
′
1z + 2f ′

0

(
f ′
1 − e′0z

)
+ z

(

2e′0e
′
1z + j′21z − 2e′1f

′
1

)

, (4.77)

1

2
L3(z) ≡ f ′

0j
′2
1 − 2e′21

(
f ′
1 − e′0z

)
+ e′1j

′
1

(
−2h′

0 + j′1z
)

, (4.78)

1

2
L4(z) ≡ j′1

(
2e′1f

′
1 + j′1

(
h′

0 − j′1z
))
− 2e′0

(
e′1
(
h′

0 + j′1z
)
− f ′

0j
′
1

)
. (4.79)

The patches of different chiralities are indeed disconnected, as we expected from

topological reasons.

5 Conclusion and discussion

In this paper we have analyzed the BPS vortices appearing in SO(N) × U(1) and

USp(2N)×U(1) gauge theories. The concrete model which our analysis is based upon can
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be regarded as the bosonic sector of the corresponding N = 2 gauge theories, but many of

our conclusions are valid on much more general grounds. A short introduction to the con-

struction of BPS vortices in a general gauge group has already been given by some of us [23].

It has been found that, in contrast to the vortices in [SU(N)×U(1)]/ZN ≃ U(N) models

studied extensively during the last several years, the vortex moduli in these theories contain

certain other moduli, generally known as semi-local vortices, whose profile functions are

characterized by their asymptotic, power-like behavior, whereas the standard ANO vortices

(including their non-Abelian counterparts found in U(N) theories) have sharp, exponential

cutoff to their transverse size. This is so even with the minimal number of matter fields,

sufficient for the system to have a “color-flavor-locked” Higgs phase. The difference with

the unitary gauge group case reflects the fact that, for a given dimension, the number of

gauge degrees of freedom is less here, due to the fact that e.g., SO(2N),USp(2N) groups

constitute a strict subgroup SU(2N).

The existence of these semi-local extensions of the vortex moduli is related to the

existence of non-trivial vacuum moduli of the system, and consequently, to the sigma model

lumps which emerge in the strong gauge coupling limit of our vortices [22, 54]. In this limit

a vortex solution collapses to a vacuum configuration everywhere on the transverse plane.

It defines a map of a 2-cycle onto the moduli space of vacua, and is thus characterized by

non-trivial elements of π2(Mvac). The existence of these semi-local moduli provides the

vortex, even at finite coupling, with a very rich structure. In this paper we tried to uncover

their general properties, with the help of concrete examples for the case of a few lower-rank

groups. An interesting phenomenon concerns the emergence of fractional vortices, where

a certain multi-peaked vortex configuration appear, even if the vortex, as a whole, has the

topologically minimal winding allowed by the stability. These features will be discussed

more extensively in a separate article [53].

Related to semi-local vortices is the issue of the non-normalizability of some of the

moduli space parameters. In the case of U(N) vortices this question was solved com-

pletely [18], by using the general formula for the effective action of vortices in terms of

the moduli matrix [29]. A part of this question was solved for a single vortex in SO and

USp gauge theories in the lump limit [22]. Here we have refined our understanding of the

non-normalizable modes, relating them as the moduli space parameters which live in a

tangent bundle of the moduli space of vacua of the theory.

We have determined the structure of the vortex moduli space, in some cases identifying

it with a well-known manifold, and determining the patches needed to cover the whole

space. This has been done both restricting to the local (ANO-like) vortices (section 3),

and considering the full moduli space (section 4). The latter is closely related to the issue of

the sigma model lumps associated to the non-trivial vacuum moduli in these theories [22],

as emphasized several times already.

The study of the moduli space of local vortices (section 3) is, on the other hand,

deeply related to the nature of non-Abelian monopoles: i.e., to the issue of non-Abelian

(e.g. GNOW) dualities. Our results in this paper represent further steps along the line

of the work [16, 26], even though here we have limited ourselves just to several examples

and a few general observations. A more systematic discussion on this problem will be

presented elsewhere [51].
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Recently, some non-BPS extensions of U(N) vortices has been studied for the local

case [30] and for the semi-local case [31] with the aim of studying interactions and stability

of non-BPS vortices. A non-BPS extension of the G′ = SO,USp cases also remains as

an open problem. In connection with this, it is known that the SO(2M) theory admits a

non-BPS Z2 vortex as π1(SO(2M)×U(1) = Z× Z2 [55], which has not been studied in this

paper. We limit ourselves to the consideration that such kind of lumps can, in principle,

mediate interactions between vortices of opposite chiralities, which, in the range of validity

of the moduli space approximation [58], are completely decoupled.
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A The index theorem

We briefly discuss the dimension of the vortex moduli space along the lines of ref. [7], see

also refs. [56, 57]. In the following we will keep the gauge group completely generic with

a single overall U(1) factor i.e. U(1) ×G′. Writing the BPS equations (e = g) with linear

fluctuations δH, δĀ, we obtain

D̄ δH = −i δĀ H , (A.1)

D δĀ− D̄ δA =
ie2

2
tr
{(

δH H† + H δH†
)

tα
}

tα , (A.2)

and the Gauss’ law reads (with ν = 0)

tr

[(
2

e2
DµFµν + iH(DνH)† − i(DνH)H†

)

tα
]

= 0 , ∀α , (A.3)

which we use as a gauge fixing condition [7]

D δĀ + D̄ δA =
ie2

2
tr
{(

δH H† −H δH†
)

tα
}

tα . (A.4)

A comment in store is that one might wonder why the Gauss law is not already fulfilled

by the fact that the solutions to the BPS equations satisfy the Euler-Lagrange equations
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of the system. Fixing the gauge can be done in many different ways, and instead of

requiring the fluctuations to be orthogonal to the gauge orbit, it proves convenient to take

a direction which corresponds to the time direction of the Gauss law. Even if there is

no time dependence of the fields in question, we promote these fluctuations as normal

fluctuations rendering the system better manageable. In other words, we constrain the a

priori different directions of the fluctuations to obey the linearized Gauss law. This leads

to the linear system

D̄ δH = −i δĀ H , (A.5)

D δĀ =
ie2

2
tr
(

δH H†tα
)

tα . (A.6)

First, we will introduce the following trick

δĀ = 2 tr
(

δĀ tβ
)

tβ , (A.7)

which makes it possible to write the linear system conveniently as the following operator

equation

∆

(

δH

δĀ

)

= 0 , (A.8)

with (taking e2 = 4 for convenience)

∆ ≡
(

iD̄ −2 tr ( ◦ tα) tαH

2 tr
(
◦ H†tα

)
tα iD

)

, (A.9)

which has the adjoint operator

∆† =

(

iD 2 tr ( ◦ tα) tαH

−2 tr
(
◦ H†tα

)
tα iD̄

)

. (A.10)

Let us start with showing that the operator ∆† does not have any zero-modes indeed. That

is, the starting point for our vanishing theorem is to take the complex norm |X|2 = tr XX†

of the operator on a fluctuation

0 =

∫

d2x

∣
∣
∣
∣
∣
∆†
(

X

Y

)∣
∣
∣
∣
∣

2

(A.11)

=

∫

d2x

[

|DX|2+|D̄Y |2+|Y H|2+
∣
∣
∣2tr

(

XH†tα
)

tα
∣
∣
∣

2
+itr∂

(

XH†Y †
)

−itr∂̄
(

Y HX†
)]

,

where the BPS equations have been used together with the fluctuation Y taking part of

the algebra Y = Y βtβ. This forces Y = 0. Here we assume the theory to be in the full

Higgs phase. We take the fluctuations to vanish at spatial infinity (|z| → ∞), thus the

boundary terms can be neglected and we can think of the conditions

D̄X† = 0 , D̄Y = 0 , Y H = 0 , tr
(

tαHX†
)

= 0 , (A.12)
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as the BPS equations and F -term conditions for an N = 2 (d = 4) theory with Y being the

adjoint scalar of the vector multiplet and X being anti-chiral fields with the superpotential

W = tr
(

Y HX†
)

. (A.13)

Recalling that this toy-theory is evaluated on the background configuration where H is

the scalar fields of the vortex and the gauge connection in the covariant derivative Ā

is also external fields determined by the background vortex configuration. The vortex

configuration can always be rewritten by means of the moduli matrix method yielding

H = S−1H0(z) which gives a holomorphic description of the field X† ≡ H̃ as H̃ = H̃0S with

S the complexified gauge fields of the background configuration. It is now easy to show that

the F -term condition yields tr
(

tαH0(z)H̃0(z)
)

= 0, which in turn simplifies our problem

to finding vacuum configurations of this N = 2 theory, which has the vacuum in the Higgs

phase almost everywhere. We utilize holomorphic invariants Ii
∓(H0, H̃0) having negative

and positive U(1) charges, respectively. The boundary conditions for the invariants are

Ii
− = 0 , Ii

+ = O (zniν) , (A.14)

with ν being the U(1) winding. The key point now is to find independent invariants with

positive U(1) charges which will reveal the possible existence of a non-zero H̃0. However,

the contrary is important here:

iff there exist no independent Ii
+, then the fluctuations X† must vanish.

In our cases having G = U(1) × G′ with G′ = U(N),SO(N),USp(2M) with a common

U(1) charge for all the fields it is an easy task to show the non-existence of independent

holomorphic invariants and the theorem readily applies and completes the proof. We can

now go on with the calculation.

Now let us calculate the following two operators ∆†∆ and ∆∆†

∆†∆ = −12∂∂̄ +

(

Γ1 + 1
2B L1

L2 Γ2 − 1
2Badj

)

, (A.15)

∆∆† = −12∂∂̄ +

(

Γ1 0

0 Γ2

)

, (A.16)

where B = F12 = −2[D, D̄] and we have defined the following operators

Γ1X = −iA∂̄X − i(∂̄A)X − iĀ∂X + ĀAX + 2 tr
(

XH†tα
)

tαH , (A.17)

Γ2Y = −i
[
Ā, ∂Y

]
− i
[
∂Ā, Y

]
− i
[
A, ∂̄Y

]
+
[
A,
[
Ā, Y

]]
+ 2 tr

(

Y HH†tα
)

tα , (A.18)

L1Y = −iYDH , (A.19)

L2X = i2 tr
(

XD̄H†tα
)

tα , (A.20)

and the algebra of Y has been used as well as the BPS equations.
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To calculate the index of ∆ we can evaluate

I = lim
M2→0

I(M2) = lim
M2→0

[

Tr

(
M2

∆†∆ + M2

)

− Tr

(
M2

∆∆† + M2

)]

, (A.21)

where Tr denotes a trace over states as well as over the matrices. Now as the eigenvalues

of the operator ∆† are all positive definite, the index counts only the zero modes of the

operator ∆. For well localized solutions (which go to zero faster than 1/r), the index is

independent of M2. For convenience we can evaluate the index in the limit M2 →∞, thus

we can expand and obtain

I(M2) = −M2Tr

[

1

−∂∂̄ + M2

(
1
2B L1

L2 −1
2Badj

)

1

−∂∂̄ + M2
+ · · ·

]

, (A.22)

where the ellipsis denote terms that vanish in taking the limit M2 →∞. Tracing over the

adjoint field strength gives zero. We can now evaluate the index as

I = − lim
M2→∞

M2Tr

∫

d2x
1

2
tr(F12)

〈

x
∣
∣
∣

(
−∂∂̄ + M2

)−2
∣
∣
∣x
〉

,

= − lim
M2→∞

M2
NF∑

1

∫

d2x
N

2
√

2N
F 0

12

∫
d2k

(2π)2
1

(
1
4k2 + M2

)2 ,

= NFNν , (A.23)

where

ν = − 1

2π
√

2N

∫

d2x F 0
12 =

k

n0
. (A.24)

Because of the vanishing theorem, the index gives exactly the number of (complex) zero-

modes for the BPS equations for the vortex. Thus we obtain the same number of zero-

modes as the number of moduli parameters in the moduli matrix formalism. Note that the

result is obtained independently of the gauge group (however only valid when the vanishing

theorem applies) and the impact of the group is simply encoded in ν. We also note that

our result reduces to that of ref. [7] for U(N) by recalling that ν = k/N in that case.

B The orientation vectors

We have considered the moduli matrix per se and studied the orientational moduli space of

the local non-Abelian vortices. Our result for G′ = SO(2M),USp(2M) is the quotient space

given in eq. (3.6). These spaces are well-known Hermitian symmetric spaces [48, 49]. They

can be embedded in the complex Grassmann space Gr2M,M ≃ SU(2M)/[SU(M)×SU(M)×
U(1)] which is described by a 2M×M complex matrix via a GL(M, C) equivalence relation

Gr2M,M ≃ Φ//GL(M, C) = {Φ ∼ ΦV} , V ∈ GL(M, C) . (B.1)

where the action of GL(M, C) is free. In other words we require the rank of Φ to be M .

The embedding is defined by the constraint [49]

ΦTJΦ = 0 , (B.2)
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where J is given by eq. (2.23).

We can relate the matrix Φ to the orientation of the local vortex as follows. Notice

that the moduli matrix decreases its rank by M at the “vortex center”, z = z0. The

orientational moduli can be extracted as M linearly independent 2M -vectors orthogonal

to H0(z = z0) [10, 11]

H0(z = z0) ~φi = 0 , (i = 1, 2, . . . ,M) . (B.3)

Let us thus define a 2M×M orientational matrix by putting ~φi (i = 1, 2, . . .) all together as

Φ =
(

~φ1, ~φ2, . . . , ~φM

)

, H0(z = z0)Φ = 0 . (B.4)

As Φ′ given by Φ′ ≡ ΦV with V ∈ GL(M, C) — which is just a change of the basis — satisfies

the same equation (B.3), Φ′ represents the same physical configuration as Φ. This leads to

the equivalence relation (B.1) and to the complex Grassmannian Gr2M,M , as claimed. The

isotropic condition (B.2) can be found as follows. The strong condition (3.1) is written as

(H0Φ)TJ(H0Φ) = zΦTJΦ . (B.5)

Taking the derivative of this with respect to z, one obtains

(∂H0Φ)TJH0Φ + (H0Φ)TJ∂H0Φ = ΦTJΦ . (B.6)

Evaluating this at z = z0 one is led to the constraint (B.2).

The advantage of considering Φ instead of H0(z) is simplification of the calculation. In

the rest of this subsection, one can completely forget the previous argument of the moduli

matrix. All the results derived from H0 can be reproduced by Φ alone. Let us explain this

by taking two examples: SO(4) and USp(4). Then Φ is a 4×2 matrix satisfying ΦTJΦ = 0.

Since Φ has rank 2, we can generally bring Φ onto the following form by using GL(2, C)

Φ
( 1
2
, 1
2
)

SO(4) =








1 0

0 1

0 −b

b 0








, Φ
( 1
2
, 1
2
)

USp(4) =








1 0

0 1

a b

b c








. (B.7)

Of course, further three patches {Φ(− 1
2
, 1
2
),Φ( 1

2
,− 1

2
), Φ(− 1

2
,− 1

2
)} are obtained by fixing

GL(2, C) in such a way that the {2-3 rows, 1-4 rows, 3-4 rows} become the unit

matrix, respectively.

The transition functions among them are given through the GL(2, C). In the case

of G′ = USp(4), the transition functions from the (1
2 , 1

2)-patch to the {(−1
2 , 1

2),(1
2 ,−1

2 ),

(−1
2 ,−1

2)}-patches are given by

V( 1
2
, 1
2
)→(− 1

2
, 1
2
)

USp(4) =

(

0 1

a b

)−1

, V( 1
2
, 1
2
)→( 1

2
,− 1

2
)

USp(4) =

(

1 0

b c

)−1

, V( 1
2
, 1
2
)→(− 1

2
,− 1

2
)

USp(4) =

(

a b

b c

)−1

.

(B.8)
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When the inverse of V does not exist, such points are not covered by two patches but only

by one of them. In the case of G′ = SO(2M), neither V(− 1
2
, 1
2
)→( 1

2
, 1
2
) nor V( 1

2
, 1
2
)→(− 1

2
, 1
2
) have

an inverse. Thus the (1
2 , 1

2)-patch is disconnected from the (−1
2 , 1

2)-patch and the (1
2 ,−1

2)-

patch. It connects only with the (−1
2 ,−1

2)-patch and the transition function is given by

V( 1
2
, 1
2
)→(− 1

2
,− 1

2
)

SO(4) =

(

0 −b

b 0

)−1

. (B.9)

Similarly, the (−1
2 , 1

2)-patch and the (1
2 ,−1

2)-patch are connected. This is a reinterpreta-

tion of the Z2-parity of the local vortex in the model with G′ = SO(4), see figure 2. An

extension of this to the local vortex in G′ = SO(2M) is straightforward.

C Some details

C.1 Spatially-separated vortices

When the two vortices are separated, i.e. δ 6= 0, the second equation of eq. (3.33) (together

with TrΓ = 0) is solved by

Γ = o′ Γ0 o′−1, Γ0 ≡
√

δ

(

1M−r

−1M−r

)

. (C.1)

There remains an arbitrariness under reshuffling the form,

o′ → o′s, Γ0 → s−1Γ0s, s ≡
(

u′
1

u′
2

)

, (C.2)

where u′
i ∈ GL(M − r, C). Then the first condition in eq. (3.33) leads to

o′TJ2(M−r) o′ =

(

0 X

ǫXT 0

)

∼ J2(M−r) , (C.3)

where we have used the above-mentioned freedom to arrive at the last form for J2(M−r).

The above relation means that o′ is an element of O(2(M − r))C (USp(2(M − r))C). There

exists still an unphysical transformation u′
1
T = u′

2
−1 ≡ u ∈ GL(M − r, C). Thus the

solution of the strong condition (3.33) with δ 6= 0 is given by

Γ ∈







{

C
∗ ×

[
O(2(M−r),C)

U(M−r)

]C
}

/Z2 for G′ = SO(2M) ,
{

C
∗ ×

[
USp(2(M−r),C)

U(M−r)

]C
}

/Z2 for G′ = USp(2M) ,
(C.4)

with the first C
∗ factor being the relative distance

√
δ. The Z2 factors in the denominators

come about due to the fact that a combination of a π-rotation in the x1-x2 space
√

δ → −
√

δ

and a permutation o′ → o′p, satisfying pΓ0p
−1 = −Γ0 is an identity operation.
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C.2 Fixing NG modes for section 3.2.1

Let us go into a detailed investigation, in order to verify the results in section 3.2.1. In the

first place note that a0;A,S and C1,2 are obviously NG modes when two vortices are coin-

cident, namely δ = 0. One can confirm this fact, for example, by considering an infinites-

imal color-flavor G′
C+F transformation accompanied by an appropriate V -transformation.

Therefore any moduli matrices of the form (3.28) can be always brought into the following

H
(
0

r
︷︸︸︷
1,...,1 ,

M−r
︷︸︸︷
0,...,0 ) =








(z − z0)
21r 0 0 0

0 (z − z0)1M−r + Γ11 0 Γ12

a1;A,S z 0 1r 0

0 Γ21 0 (z − z0)1M−r + Γ22








. (C.5)

For δ = 0, the rank 2γ = rank(Γ) is less than 2γ < 2(M − r). The first condition in

eq. (3.33) states that ΓJ2(M−r) is anti-symmetric (symmetric), so that Γ can be written as

Γ = ǫ qJ̃2γ qT J2(M−r) , (C.6)

where q is a 2(M − r)× 2γ matrix whose rank is 2γ, (M − r ≥ γ), and J̃2γ is the invariant

tensor of G̃′
2γ = USp(2γ) for G′ = SO(2M) and G̃′

2γ = SO(2γ) for G′ = USp(2M). Then

the second condition is translated into the following constraint on q:

A = 0 , A ≡ qTJ2(M−r)q . (C.7)

Note that the rank of A = qTJ2(M−r)q is bounded as

4γ − 2(M − r) ≤ rank(A) ≤ rank(q) = 2γ . (C.8)

Therefore, 2γ ≤ M − r in the present case of rank(A) = 0. This last condition can be

solved by

q = O

(

g

02(M−r−γ)×2γ

)

, g ∈ GL(2γ, C) , O ∈ G′
2(M−r) . (C.9)

Thus we find

Γ = O








gJ̃2γgT

0M−r−2γ

02γ

0M−r−2γ








OTJ2(M−r) . (C.10)

In the case of G′ = SO(2M), we can bring the anti-symmetric matrix gJ̃2γgT onto a

block-diagonal form as

gJ̃2γgT = uΛuT, Λ ≡ iσ2 ⊗ diag(λ11p1, λ21p2 , . . . , λq1pq), (λi > λi+1 > 0), (C.11)

where u ∈ U(2γ) and 2
∑q

i=1 pi = 2γ. Thus we have found

Γ = O′








Λ

0M−r−2γ

02γ

0M−r−2γ








O′−1 , (C.12)
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O′ ≡ O








u

1M−r−2γ
(
uT
)−1

1M−r−2γ







∈ SO(2(M − r)) . (C.13)

Similarly, the anti-symmetric tensor a1;,A can be brought onto a diagonal form. Let

rank(a1,A) = 2α ≤ r, then we obtain

a1;A =

(

0r−α

u′ Λ′ u′T

)

, Λ′ ≡ iσ2 ⊗ diag(λ′
11p′1

, λ′
21p′2

, . . . , λ′
q′1p′

q′
) , (C.14)

where u′ ∈ U(2α), 2
∑q′

i=1 p′i = 2α and λ′
i > λ′

i+1 > 0. Finally, we arrive at the following

expression

H0 =

















z21r−2α 0 0 0 0 0 0 0

0 z212α 0 0 0 0 0 0

0 0 z12γ 0 0 0 Λ 0

0 0 0 z1M−r−2γ 0 0 0 0M−r−2γ

0r−2α 0 0 0 1r−2α 0 0 0

0 Λ′ z 0 0 0 12α 0 0

0 0 0 0 0 0 z12γ 0

0 0 0 0 0 0 0 z1M−r−2γ

















, (C.15)

where we have turned off the center of mass z0 = 0. One can return to the previous

moduli matrix by using the color-flavor symmetry H0 → U−1H0U with

U ≡













1r−2α

u′T

O′−1

1r−2α

u′−1

O′−1













∈ SO(2M) . (C.16)

By making use of the V -transformation, one can bring this onto the following form

V H0 =

















z21r−2α 0 0 0 0 0 0 0

0 z212α 0 0 0 0 0 0

0 0 z212γ 0 0 0 0 0

0 0 0 z1M−r−2γ 0 0 0 0

0 0 0 0 1r−2α 0 0 0

0 Λ′ z 0 0 0 12α 0 0

0 0 Λ−1z 0 0 0 12γ 0

0 0 0 0 0 0 0 z1M−r−2γ

















, (C.17)
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V =

















1r−2α 0 0 0 0 0 0 0

0 12α 0 0 0 0 0 0

0 0 z12γ 0 0 0 −Λ 0

0 0 0 1M−r−2γ 0 0 0 0

0 0 0 0 1r−2α 0 0 0

0 0 0 0 0 12α 0 0

0 0 Λ−1 0 0 0 02γ 0

0 0 0 0 0 0 0 z1M−r−2γ

















. (C.18)

where one can check that V ∈ SO(2M, C) because ΛT = −Λ. We can rearrange the

eigenvalues λ̃a = {λ−1
i , λ′

j} in such a way that

diag
(
Λ′ , Λ−1

)
= iσ2 ⊗ diag

(

λ̃11p̃1 , . . . , λ̃s1p̃s

)

, λ̃a > λ̃a+1 > 0 , (C.19)

hence the G′
C+F = SO(2M) orbit can easily be seen in eq. (3.56).

The arguments for G′ = USp(2M) are analogous to those of G′ = SO(2M). A small

difference is that J2(M−r)Γ and a1;S are now symmetric. In the end, we obtain the moduli

matrix on the following form

H0 =












z21r−β 0 0 0 0 0

0 z21β+ζ 0 0 0 0

0 0 z1M−r−ζ 0 0 0

0 0 0 1r−β 0 0

0 Λ̃ z 0 0 1β+ζ 0

0 0 0 0 0 z1M−r−ζ












, (C.20)

Λ̃ = diag(λ̃11p̃1 , . . . , λ̃s1p̃s) , (C.21)

with β = rank(Γ) and ζ = rank(a1;S).

D Some transition functions

Here we make a collection of some of the transition functions discussed in the main text.

D.1 Example 1

The transition functions between two Z2-parity +1 patches for the minimal semi-local

vortices in G′ = SO(4) theory of section 4.2.1:







a = −f ′i′ + a′+d′

2 ,

b = −g′i′ ,

c = e′i′ ,

d = f ′i′ + a′+d′

2 ,

e = −c′i′ ,

f = (a′
−d′)i′

2 ,

g = b′i′ ,

i = − 1
i′

.

(D.1)
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D.2 Example 2

The transition functions between H
(0,0)
0 and H

(1,1)
0 for the k = 2 semi-local vortices in

G′ = SO(4) theory of section 4.3.1:






a0 = 1
2a′

1 − 1
2d′1 +

i′
0

i′
1

,

b0 = b′1 ,

c0 = e′1 ,

d0 = f ′

1 − 1
i′
1

,

e0 = c′1 ,

f0 = − 1
2a′

1 + 1
2d′1 +

i′
0

i′
1

,

g0 = f ′

1 + 1
i′
1

,

h0 = g′1 ,

i0 = −c′1i
′

0 − c′0i
′

1 + 1
2a′

1c
′

1i
′

1 + 1
2c′1d

′

1i
′

1 ,

j0 = a′

1i
′

0 − i
′
2

0

i′
1

− 1
4a

′2
1 i′1 − d′0i

′

1 + 1
4d

′2
1 i′1 ,

k0 = 1
2a′

1 + 1
2d′1 − f ′

1i
′

0 − f ′

0i
′

1 − i′
0

i′
1

+ 1
2a′

1f
′

1i
′

1 + 1
2d′1f

′

1i
′

1 ,

l0 = −g′1i
′

0 − g′0i
′

1 + 1
2a′

1g
′

1i
′

1 + 1
2d′1g

′

1i
′

1 ,

m0 = −d′1i
′

0 + a′

0i
′

1 +
i
′
2

0

i′
1

− 1
4a

′2
1 i′1 + 1

4d
′2
1 i′1 ,

n0 = b′1i
′

0 + b′0i
′

1 − 1
2a′

1b
′

1i
′

1 − 1
2d′1b

′

1i
′

1 ,

o0 = e′1i
′

0 + e′0i
′

1 − 1
2a′

1e
′

1i
′

1 − 1
2d′1e

′

1i
′

1 ,

p0 = 1
2a′

1 + 1
2d′1 + f ′

1i
′

0 + f ′

0i
′

1 − i′
0

i′
1

− 1
2a′

1f
′

1i
′

1 − 1
2d′1f

′

1i
′

1.

(D.2)

These transition functions are, of course, invertible.

D.3 Example 3

The transition functions between the patches with Z2-parity −1, viz. H
(1,0)
0 and H

(−1,0)
0 ,

for the k = 2 semi-local vortices in G′ = SO(4) theory discussed in section 4.3.1, are






a1 = −c′1e
′

1i
′

1 − e′

0

e′

1

− i′
0

i′
1

,

a0 = −c′0e
′

1i
′

1 +
e′

0
i′
0

e′

1
i′
1

,

b1 = −b′1e
′

1i
′

1 − f ′

0i
′

1 − e′1j
′

0 +
e′

0
i′
1

e′

1

,

b0 = −b′0e
′

1i
′

1 − f ′

0i
′

0 − e′0j
′

0 +
e′

0
i′
0

e′

1

,

c1 = −a′

1e
′

1i
′

1 − e′0i
′

1 − e′1i
′

0 ,

c0 = −a′

0e
′

1i
′

1 + e′0i
′

0 ,

d1 = −d′1e
′

1i
′

1 − g′0i
′

1 − e′1k
′

0 − e′

1
i′
0

i′
1

,

d0 = −d′0e
′

1i
′

1 + g′0i
′

0 + e′0k
′

0 − e′

0
i′
0

i′
1

e1 = − 1
i′
1

,

e0 = − i′
0

i
′2

1

,

f0 = − i′
0

i′
1

− e′

1
j′
0

i′
1

,

g0 = − e′

1
k′

0

i′
1

− e′

1
i′
0

i
′2

1

,

i1 = − 1
e′

1

,

i0 = − e′

0

e
′2

1

,

j0 = − i′
1
f ′

0

e′

1

− i′
1
e′

0

e
′2

1

,

k0 = − g′

0
i′
1

e′

1

− e′

0

e′

1

.
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D.4 Example 4

The transition functions between the patches (−1) and (1) for the k = 1 semi-local vortices

in G′ = SO(3) theory discussed in section 4.4.1, are







d = − 2
d′

,

e = − 2e′

d′2
,

z3 = − 2e′

d′
− z′3 ,

f = d′e′ − 1
2d′

2
z′1 ,

a = 1
2

(

e′
2 − d′

2
z′2

)

,

b = − 1
2b′d′

2 − e′ − d′z′3 ,

c = − 1
2c′d′

2 − e′
(

e′

d′
+ z′3

)

,

z1 = 2e′

d′
− 1

2d′
2
f ′ ,

z2 = e′2

d′2 − 1
2a′d′

2
.

(D.4)

D.5 Example 5

The transition functions between the patches (1, 1) and (0, 0) for the k = 1 semi-local

vortices in G′ = SO(5) theory discussed in section 4.4.2, are







a′

1 = a1−a4

2 + f
e

+ i1i2
2e

,

a′

2 = a2 +
i2
2

2e
,

a′

3 = c1 ,

a′

4 = − 1
e

+ c2 ,

a′

5 = g1 − i2
e

,

b′1 = a3 − i2
1

2e
,

b′2 = −a1−a4

2 + f
e
− i1i2

2e
,

b′3 = 1
e

+ c2 ,

b′4 = c3 ,

b′5 = g2 + i1
e

,

c′1 = −eb3 + ea3(a1+a4)
2 − a3f − i1(a1i1+a3i2)

2 − i1j1 ,

c′2 = −eb4 −
e(a2

1
−a2

4)
4 + a1f − f2

e
− i1(a2i1+a4i2)

2 − i1j2 ,

c′3 = −ed2 + c2e(a1+a4)
2 + a1+a4

2 − f
e
− c2f − i1(c1i1+c2i2)

2 − i1i2
2e

,

c′4 = −ed3 + c3e(a1+a4)
2 − c3f +

i2
1

2e
− i1(c2i1+c3i2)

2 ,

c′5 = −eh2 + g2e(a1+a4)
2 − fg2 + i1(a1+a4)

2 − fi1
e
− i1(g1i1+g2i2)

2 − i1y ,

d′1 = eb1 −
e(a2

1
−a2

4)
4 − a4f + f2

e
− i2(a1i1+a3i2)

2 − i2j1 ,

d′2 = eb2 − a2e(a1+a4)
2 + a2f − i2(a2i1+a4i2)

2 − i2j2 ,

d′3 = ed1 − c1e(a1+a4)
2 + c1f − i2(c1i1+c2i2)

2 − i2
2

2e
,

d′4 = ed2 − c2e(a1+a4)
2 + a1+a4

2 − f
e

+ c2f − i2(c2i1+c3i2)
2 + i1i2

2e
,

d′5 = eh1 − g1e(a1+a4)
2 + fg1 + i2(a1+a4)

2 − fi2
e
− i2(g1i1+g2i2)

2 − i2y ,

e′1 = j1 + i1(a1−a4)
2 + fi1

e
+ a3i2 ,

e′2 = j2 − i2(a1−a4)
2 + fi2

e
+ a2i1 ,

e′3 = c1i1 + c2i2 + i2
e

,

e′4 = c2i1 + c3i2 − i1
e

,

e′5 = y + g1i1 + g2i2 ,
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D.6 Example 6

The transition functions between the patches (−1, 0) and (1, 0) for the k = 1 semi-local

vortices in G′ = SO(5) theory discussed in section 4.4.2, are







a0 =
2f ′

0
f ′

1
+h′2

0

Ξ − 1
2b′0Ξ ,

a1 = − 2(e′

0
f ′

0
+e′

1
f ′

1
+h′

0
j′
1)

Ξ − 1
2b′1Ξ ,

b0 = f ′

0f
′

1 + 1
2h′2

0 − 1
2a′

0Ξ ,

b1 = −e′0f
′

0 − e′1f
′

1 − h′

0j
′

1 − 1
2a′

1Ξ ,

c0 = f ′

1g
′

0 + f ′

0g
′

2 + h′

0h
′

1 +
e′

0(2f ′

0
f ′

1
+h′2

0)
Ξ − 1

2c′0Ξ ,

c1 = f ′

1 − e′0g
′

0 − e′1g
′

2 − h′

1j
′

1 −
2e′

0(e′

0
f ′

0
+e′

1
f ′

1
+h′

0
j′
1)

Ξ − 1
2 c′1Ξ ,

d0 = f ′

1g
′

1 + f ′

0g
′

3 + h′

0h
′

2 +
e′

1(2f ′

0
f ′

1
+h′2

0)
Ξ − 1

2d′0Ξ ,

d1 = f ′

0 − e′0g
′

1 − e′1g
′

3 − h′

2j
′

1 −
2e′

1(e′

0
f ′

0
+e′

1
f ′

1
+h′

0
j′
1)

Ξ − 1
2d′1Ξ ,

e0 = − 2e′

0

Ξ ,

e1 = − 2e′

1

Ξ ,

f0 =
−4e

′
2

1
f ′

1
−4e′

1
h′

0
j′
1
+2f ′

0
j
′
2

1

Ξ2 ,

f1 =
−4e

′
2

0
f ′

0
−4e′

0
h′

0
j′
1
+2f ′

1
j
′
2

1

Ξ2 ,

g0 = g′0 −
2e′

1(e′

0
g′

0
+e′

1
g′

2
+h′

1
j′
1)

Ξ +
2e′

0

“

−2e
′
2

1
f ′

1
−2e′

1
h′

0
j′
1
+f ′

0
j
′
2

1

”

Ξ2 ,

g1 =
4e

′
3

1 (f ′

1
+e′

0
g′

3)+g′

1
j
′
4

1
−2e

′
2

1
j′
1(2h′

0
+2e′

0
h′

2
+g′

3
j′
1)+2e′

1
j
′
2

1 (f ′

0
+e′

0
g′

1
−h′

2
j′
1)

Ξ2 ,

g2 =
−4e

′
3

0 (f ′

0
+e′

1
g′

0)+g′

2
j
′
4

1
−2e

′
2

0
j′
1(2h′

0
+2e′

1
h′

1
+g′

0
j′
1)+2e′

0
j
′
2

1 (f ′

1
+e′

1
g′

2
−h′

1
j′
1)

Ξ2 ,

g3 = g′3 −
4e′

0
e′

1(e′

0
f ′

0
+e′

1
f ′

1
+h′

0
j′
1)

Ξ2 − 2
“

−e′

1
f ′

1
+e

′
2

0
g′

1
+e′

0
e′

1
g′

3
+e′

0
h′

2
j′
1

”

Ξ ,

h0 =
−4e′

0
e′

1
h′

0
+4e′

0
f ′

0
j′
1
+4e′

1
f ′

1
j′
1
+2h′

0
j
′
2

1

Ξ2 ,

h1 =
4e

′
2

0 (−e′

1(h′

0
+e′

1
h′

1)+(f ′

0
+e′

1
g′

0)j′
1)+j

′
3

1 (2e′

1
g′

2
+h′

1
j′
1)+2e′

0
j′
1(2e′

1(f ′

1
+e′

1
g′

2)+j′
1(h′

0
+g′

0
j′
1))

Ξ2 ,

h2 =
−4e′

0
e
′
2

1 (h′

0
+e′

0
h′

2)+4e′

1(e′

1
f ′

1
+e′

0(f ′

0
+e′

0
g′

1
+e′

1
g′

3))j′
1
+2e′

1
h′

0
j
′
2

1
+2(e′

0
g′

1
+e′

1
g′

3)j
′
3

1
+h′

2
j
′
4

1

Ξ2 ,

i0 =
2e

′
2

0
e
′
2

1
i′
0
−2e′

0
e′

1

“

f ′

1
j′
0
−i′

0
j
′
2

1
+f ′

0
j′
2
+h′

0
k′

”

+j′
1

“

−f ′

1
j′
0
j′
1
+ 1

2
i′
0
j
′
3

1
−f ′

0(2f ′

1
+j′

1
j′
2)−h′

0(h′

0
+j′

1
k′)

”

Ξ ,

i1 =
2e

′
2

0
e′

1(e′

1
i′
1
+j′

0)+j′
1

“

2e′

1
f ′

1
+h′

0
j′
1
+1

2
i′
1
j
′
3

1
+e′

1
j′
1
j′
2
+j

′
2

1
k′

”

+e′

0

“

j′
1(2f ′

0
+j′

0
j′
1)+2e

′
2

1
j′
2
+2e′

1(−h′

0
+j′

1(i′
1
j′
1
+k′))

”

Ξ ,

j0 =
−j

′
3

1 (2f ′

0
+j′

0
j′
1)+4e′

0
e
′
3

1
j′
2
+2e

′
2

1
j′
1(2f ′

1
+j′

1
j′
2
+2e′

0
k′)+2e′

1
j
′
2

1 (2h′

0
−e′

0
j′
0
+j′

1
k′)

Ξ2 ,

j1 =
2j′

1

Ξ ,

j2 =
4e

′
3

0
e′

1
j′
0
−j

′
3

1 (2f ′

1
+j′

1
j′
2)+2e

′
2

0
j′
1(2f ′

0
+j′

0
j′
1
+2e′

1
k′)+2e′

0
j
′
2

1 (2h′

0
−e′

1
j′
2
+j′

1
k′)

Ξ2 ,

k =
−2e′

0
j′
1

“

−2e′

1
h′

0
+j′

1(2f ′

0
+j′

0
j′
1)+2e

′
2

1
j′
2

”

+4e
′
2

0
e′

1(−j′
0
j′
1
+e′

1
k′)−j

′
2

1

“

4e′

1
f ′

1
+2h′

0
j′
1
+2e′

1
j′
1
j′
2
+j

′
2

1
k′

”

Ξ2 .

(D.6)
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